日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.
          y2=8x
          由題設(shè),問題可轉(zhuǎn)化為動圓圓心到點(diǎn)(2,0)與直線x+2=0的距離相等,其軌跡是以(2,0)為焦點(diǎn),以x+2=0為準(zhǔn)線的拋物線.
          ∴p=4,其方程為y2=8x.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分14分)已知動圓過定點(diǎn),且和定直線相切.(Ⅰ)求動圓圓心的軌跡的方程;(Ⅱ)已知點(diǎn),過點(diǎn)作直線與曲線交于兩點(diǎn),若為實(shí)數(shù)),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知曲線的方程為:
          (1)若曲線是橢圓,求的取值范圍;
          (2)若曲線是雙曲線,且有一條漸近線的傾斜角為,求此雙曲線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          以O(shè)為原點(diǎn),所在直線為軸,建立如 所示的坐標(biāo)系。設(shè),點(diǎn)F的坐標(biāo)為,,點(diǎn)G的坐標(biāo)為。
          (1)求關(guān)于的函數(shù)的表達(dá)式,判斷函數(shù)的單調(diào)性,并證明你的判斷;
          (2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時橢圓的方程;
          (3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C、D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,動圓與定圓B:x2+y2-4y-32=0內(nèi)切且過定圓內(nèi)的一個定點(diǎn)A(0,-2),求動圓圓心P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知直線與曲線交于不同的兩點(diǎn),為坐標(biāo)原點(diǎn).
          (Ⅰ)若,求證:曲線是一個圓;
          (Ⅱ)若,當(dāng)時,求曲線的離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)橢圓 (a>b>0)的左頂點(diǎn)為A,若橢圓上存在一點(diǎn)P,使∠OPA= (O為原點(diǎn)),求橢圓離心率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          過拋物線的焦點(diǎn)作互相垂直的兩條直線,分別交準(zhǔn)線于兩點(diǎn),又過分別作拋物線對稱軸的平行線,交拋物線于兩點(diǎn),求證三點(diǎn)共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓與雙曲線有相同的焦點(diǎn),則橢圓的離心率為
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案