日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1所示,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動(dòng)點(diǎn),AB∥OQ,OP與AB交于點(diǎn)B,AC∥OP,OQ與AC交于點(diǎn)C.記∠AOP=α.
          (1)若數(shù)學(xué)公式,如圖1,當(dāng)角α取何值時(shí),能使矩形ABOC的面積最大;
          (2)若數(shù)學(xué)公式,如圖2,當(dāng)角α取何值時(shí),能使平行四邊形ABOC的面積最大.并求出最大面積.

          解:(1)若,由題意可得 AB=sinα,BO=cosα,故矩形ABOC的面積S=AB•BO=sin2α,
          故當(dāng)α=時(shí),能使矩形ABOC的面積最大.
          (2)若,由題意可得0<α<,作AH⊥OP,H為垂足,則AH=sinα,OH=cosα,tan∠ABH==tan=,
          故BH=sinα,∴OB=cosα-sinα.
          故平行四邊形ABOC的面積S′=OB•AH=(cosα-sinα )sinα=sinαcosα-sin2α
          =sin2α-×=sin2α-cos2α-=sin(2α+)-
          由于0<α<,故<2α+,故當(dāng) 2α+=時(shí),S′取得最大值為
          分析:(1)若,由題意可得 AB=sinα,BO=cosα,求得矩形ABOC的面積S=AB•BO=sin2α,由此求得角α取何值時(shí),能使矩形ABOC的面積最大.
          (2)若,作AH⊥OP,H為垂足,則AH=sinα,OH=cosα,BH=sinα,可得OB=cosα-sinα.化簡平行四邊形ABOC的面積S′=OB•AH,等于 sin(2α+)-.由0<α<,可得當(dāng) 2α+=時(shí),S′取得最大值為
          點(diǎn)評:本題主要考查兩角和差的正弦、余弦公式的應(yīng)用,二倍角公式,正弦函數(shù)的定義域和值域,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,BD=1,AF=2,CE=3,O為AB的中點(diǎn).
          (1)求證:OC⊥DF;
          (2)試問線段CE上是否存在一點(diǎn)P,使得OP∥平面DEF?若存在,求出CP的長度,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖1所示,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動(dòng)點(diǎn),AB∥OQ,OP與AB交于點(diǎn)B,AC∥OP,OQ與AC交于點(diǎn)C.記∠AOP=α.
          (1)若θ=
          π
          2
          ,如圖1,當(dāng)角α取何值時(shí),能使矩形ABOC的面積最大;
          (2)若θ=
          π
          3
          ,如圖2,當(dāng)角α取何值時(shí),能使平行四邊形ABOC的面積最大.并求出最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知點(diǎn)G是△ABO的重心.
          (1)求
          GA
          +
          GB
          +
          GO
          ;
          (2)若PQ過△ABO的重心G,且
          OA
          =
          a
          ,
          OB
          =
          b
          OP
          =m
          a
          ,
          OQ
          =n
          b
          ,求證:
          1
          m
          +
          1
          n
          =3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:047

          如圖所示,已知梯形ABCD的對角線ACBD相交于P點(diǎn),兩腰BA、CD的延長線相交于O點(diǎn),EF∥BCEFP點(diǎn).求證:(1)EP=PF;(2)OP平分ADBC

          查看答案和解析>>

          同步練習(xí)冊答案