日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,圓錐的軸截面為等腰直角, 為底面圓周上一點(diǎn).

          (1)若的中點(diǎn)為,求證平面;
          (2)如果,,求此圓錐的全面積.

          (1)詳見解析;(2).

          解析試題分析:(1)要證平面,即證垂直于平面內(nèi)的兩條相交直線,是已知,轉(zhuǎn)化為證平面,利用母線相等,利用底面半徑相等,為中點(diǎn),證得平面 ,證得,,得證;(2),求出底面半徑,以及母線長,根據(jù)全面積公式,,求出全面積.
          試題解析:解:①連接OC,
          ∵OQ=OB,C為QB的中點(diǎn),∴OC⊥QB                        2分
          ∵SO⊥平面ABQ,BQ平面ABQ
          ∴SO⊥BQ,結(jié)合SO∩OC=0,可得BQ⊥平面SOC
          ∵OH?平面SOC,∴BQ⊥OH,                              5分
          ∵OH⊥SC,SC、BQ是平面SBQ內(nèi)的相交直線,
          ∴OH⊥平面SBQ;                                          6分
          ②∵∠AOQ=60°,QB=,∴直角△ABQ中,∠ABQ=30°,
          可得AB==4 8分
          ∵圓錐的軸截面為等腰直角△SAB,
          ∴圓錐的底面半徑為2,高SO=2,可得母線SA=2,
          因此,圓錐的側(cè)面積為S側(cè)=π×2×2=4π                       10分
          ∴此圓錐的全面積為S側(cè)+S=4π+π×22=(4+4)π    12分
          考點(diǎn):1.線面垂直的判定;2.線面垂直的性質(zhì);3.幾何體的表面積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.

          (1)求證:AC⊥DE;
          (2)求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,三棱柱中,,,.

          (1)證明:;
          (2)若,,求三棱柱的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          四面體的六條棱中,有五條棱長都等于a.
          (1)求該四面體的體積的最大值;
          (2)當(dāng)四面體的體積最大時,求其表面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分別為AC、AB的中點(diǎn),將△AEF沿EF折起,使A′在平面BCEF上的射影O恰為EC的中點(diǎn),得到圖(2).

          (1)求證:EF⊥A′C;
          (2)求三棱錐FA′BC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐PABCD中,平面PAD⊥平面ABCD,ABDC,△PAD是等邊三角形,已知AD=4,BD=4,AB=2CD=8.

          (1)設(shè)MPC上的一點(diǎn),證明:平面MBD⊥平面PAD
          (2)當(dāng)M點(diǎn)位于線段PC什么位置時,PA∥平面MBD?
          (3)求四棱錐PABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

          (1)證明:AB⊥A1C;
          (2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知直三棱柱中,,中點(diǎn),中點(diǎn).

          (1)求三棱柱的體積;
          (2)求證:;
          (3)求證:∥面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          中,AB=2BF=4,C,E分別是AB,AF的中點(diǎn)(如下左圖).將此三角形沿CE對折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點(diǎn).

          (1)求證:CD∥平面AEF;
          (2)求證:平面AEF⊥平面ABF;
          (3)求三棱錐C-AEF的體積,

          查看答案和解析>>

          同步練習(xí)冊答案