日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)loga(ax2x1)(a0,a1)

          (1) a求函數(shù)f(x)的值域.

          (2) 當(dāng)f(x)在區(qū)間上為增函數(shù)時(shí),a的取值范圍.

          【答案】1(,1].(2[2,+)

          【解析】試題分析:(1)先確定y=x2x1范圍為 ,再根據(jù)對(duì)數(shù)函數(shù)單調(diào)性確定函數(shù)值域(1](2)由復(fù)合函數(shù)單調(diào)性依次討論:若a>1,y=ax2x1在區(qū)間上為增函數(shù),結(jié)合二次函數(shù)對(duì)稱軸得,解得 a2; 0<a<1y=ax2x1在區(qū)間上為減函數(shù),結(jié)合二次函數(shù)對(duì)稱軸以及定義區(qū)間得,且 ,解得

          試題解析: 解:(1) a,f(x)log0.5log0.5[ (x1)2]log0.51,

          所以a時(shí)函數(shù)f(x)的值域是(,1]

          (2) a>1f(x)在區(qū)間上為增函數(shù),只要a1>0,解得a2

          0<a<1,f(x)在區(qū)間[,]上為增函數(shù),只要a1>0,解得a.

          綜上所述,所求a的取值范圍是(,]∪[2,+∞).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.

          (1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;

          (2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若函數(shù)f(x)=為奇函數(shù).

          (1) 求a的值;

          (2) 判斷f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校100名學(xué)生其中考試語(yǔ)文成績(jī)的頻率分布直方圖所示,其中成績(jī)分組區(qū)間是:

          .

          (1)求圖中的值;

          (2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;

          (3)若這100名學(xué)生語(yǔ)文某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,

          求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列滿足,其中, .

          (1)求 , ,并猜想的表達(dá)式(不必寫出證明過(guò)程);

          (2)設(shè),數(shù)列的前項(xiàng)和為,求證: .

          (B)已知數(shù)列的前項(xiàng)和為,且滿足 .

          (1)求, , , ,并猜想的表達(dá)式(不必寫出證明過(guò)程);

          (2)設(shè), ,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用 (單位:萬(wàn)元)與隔熱層厚度 (單位: )滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

          (1)求的值及的表達(dá)式;

          (2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知平行四邊形,的中點(diǎn)且△是等邊三角形沿把△折起至的位置,使得

          1是線段的中點(diǎn)求證平面;

          2求證:

          3求點(diǎn)到平面的距離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)已知點(diǎn),和平面內(nèi)一點(diǎn)),過(guò)點(diǎn)任作直線與橢圓相交于,兩點(diǎn),設(shè)直線,,的斜率分別為,,,試求,滿足的關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,的重心,.

          (1)求證:平面;

          (2)若側(cè)面底面,,求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案