日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足:,且
          (1)求a2,a3,a4
          (2)求證:數(shù)列{bn}為等比數(shù)列,并求其通項(xiàng)公式;
          (3)若S2n+1=a1+a2+…+a2n+a2n+1,求S2n+1
          【答案】分析:(1)直接把n=1,2,3代入已知遞推公式中即可求解a2,a3,a4;
          (2)由等比數(shù)列的定義,只要證明為常數(shù)即可,然后結(jié)合等比數(shù)列的通項(xiàng)公式可求
          (3)由a2n=bn+2,a2n+1=a2n-4n=bn+2-4n,可利用分組求和,結(jié)合等差數(shù)列與等比數(shù)列的求和公式即可求解
          解答:(1)解:∵
          ,…(2分)
          (2)證明:由題意可得,當(dāng)=
          ,
          ∴數(shù)列{bn}是以-為首項(xiàng),以為公比的等比數(shù)列
          …(6分)
          (3)解:∵a2n=bn+2,a2n+1=a2n-4n=bn+2-4n
          ∴S2n+1=a1+a2+…+a2n+a2n+1=(a2+a4+…+a2n)+(a1+a3+a5+…+a2n+1
          =(b1+b2+…+bn+2n)+[a1+(b1-4×1)+(b2-4×2)+…+(bn-4×n)+2n]
          =a1+2(b1+b2+…+bn)-4×(1+2+…+n)+4n
          =.…(12分)
          點(diǎn)評(píng):本題 主要考查了利用數(shù)列的遞推公式求解數(shù)列的項(xiàng),等比數(shù)列的定義在等比數(shù)列的證明中的應(yīng)用,分組求和方法及等比數(shù)列、等差數(shù)列的求和公式等 知識(shí)的綜合應(yīng)用
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an;
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案