日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),
          (1)求函數(shù)上的最小值;
          (2)若函數(shù)的圖像恰有一個公共點(diǎn),求實(shí)數(shù)a的值;
          (3)若函數(shù)有兩個不同的極值點(diǎn),且,求實(shí)數(shù)a的取值范圍。

          (1)當(dāng)時最小值,當(dāng)時最小值(2)3(3)

          解析試題分析:(1)令,得,①當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增。此時最小值為;②當(dāng)時,函數(shù)在上單調(diào)遞增,此時最小值為。
          (2)上有且僅有僅有一個根,即上有且僅有僅有一個根,令,則上遞增,所以。
          (3),由題意知有兩個不同的實(shí)數(shù)根,等價于有兩個不同的實(shí)數(shù)根,等價于直線與函數(shù)的圖像有兩個不同的交點(diǎn)。
          所以當(dāng)時,存在,且的值隨著的增大而增大。
          而當(dāng)時,則有,兩式相減得代入,解得此時,所以實(shí)數(shù)的取值范圍為
          考點(diǎn):函數(shù)單調(diào)性最值
          點(diǎn)評:第一小題求最值需對參數(shù)分情況討論從而確定最值點(diǎn)的位置,第二小題將方程的根的情況轉(zhuǎn)化為函數(shù)最值得判定,這種轉(zhuǎn)化方法包括將不等式恒成立問題轉(zhuǎn)化為函數(shù)最值問題都是函數(shù)題目中經(jīng)常用到的思路,須加以重視

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=,其中a>0,
          (Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
          (Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          函數(shù)
          (1)求的極值點(diǎn);
          (2)若恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)當(dāng)時,求證:函數(shù)上單調(diào)遞增;
          (Ⅱ)若函數(shù)有三個零點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (I)當(dāng)時,求曲線在點(diǎn)處的切線方程;
          (II)在區(qū)間內(nèi)至少存在一個實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知.
          (1)已知函數(shù)h(x)=g(x)+ax3的一個極值點(diǎn)為1,求a的取值;
          (2) 求函數(shù)上的最小值;
          (3)對一切,恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知為實(shí)數(shù),
          (1)求導(dǎo)數(shù)
          (2)若,求在[-2,2] 上的最大值和最小值;
          (3)若上都是遞增的,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ln(1+x)-.
          (1)求f(x)的極小值;   (2)若a、b>0,求證:lna-lnb≥1-.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          已知曲線f (x ) =" a" x 2 +2在x=1處的切線與2x-y+1=0平行
          (1)求f (x )的解析式 
          (2)求由曲線y="f" (x ) 與,,所圍成的平面圖形的面積。

          查看答案和解析>>

          同步練習(xí)冊答案