日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中,平面, ,,中點(diǎn).

          (1)求異面直線所成角的余弦值;

          (2)點(diǎn)在線段,且,若直線與平面所成角的正弦值為,求的值

          【答案】(1)(2)

          【解析】

          試題分析:(1)利用空間向量求線線角,先根據(jù)題意確定空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),表示直線方向向量,利用向量數(shù)量積求向量夾角余弦值,最后根據(jù)線線角與向量夾角關(guān)系得線線角余弦值(2)利用空間向量求線面角,先根據(jù)題意確定空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組求面的法向量,利用向量數(shù)量積求向量夾角余弦值,最后根據(jù)線面角與向量夾角互余關(guān)系列等量關(guān)系,解出的值

          試題解析:(1)

          因?yàn)?/span>平面,平面,

          所以,,

          又因?yàn)?/span>,所以兩兩互相垂直.

          分別以軸建立空間直角坐標(biāo)系,

          則由,可得

          ,,,

          又因?yàn)?/span>中點(diǎn),所以

          所以,,…………2

          所以

          所以異面直線,所成角的余弦值為…………………………5

          2因?yàn)?/span>,所以,

          ,,

          設(shè)平面的法向量為,

          ,解得,,

          所以平面的一個(gè)法向量.……………………………7

          因?yàn)橹本與平面所成角的正弦值為,

          所以,

          解得,

          所以的值為……………………………………………………………10分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的長半軸為半徑的圓與直線相切.

          1求橢圓的標(biāo)準(zhǔn)方程;

          2已知點(diǎn),為動(dòng)直線與橢圓的兩個(gè)交點(diǎn),問:在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為常數(shù),函數(shù)

          (1)當(dāng)時(shí),求函數(shù)的最小值;

          (2)若有兩個(gè)極值點(diǎn),):

          求實(shí)數(shù)的取值范圍;

          求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,點(diǎn)為坐標(biāo)原點(diǎn),若橢圓與曲線的交點(diǎn)分別為上),且兩點(diǎn)滿足

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)過橢圓上異于其頂點(diǎn)的任一點(diǎn),作的兩條切線,切點(diǎn)分別為,且直線軸、軸上的截距分別為,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有當(dāng)點(diǎn)橫坐標(biāo)為時(shí),為正三角形

          (1)求的方程;

          (2)若直線,且 有且只有一個(gè)公共點(diǎn)

          證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);

          的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn),

          (1)若直線平行于,與圓相交于兩點(diǎn),,求直線的方程;

          (2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù);若不存在,說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料,生產(chǎn)一件產(chǎn)品需要甲材料1.5,乙材料1,用5個(gè)工時(shí),生產(chǎn)一件產(chǎn)品需要甲材料0.5,乙材料0.3,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品的利潤為2100元,生產(chǎn)一件產(chǎn)品的利潤為900元.該企業(yè)現(xiàn)有甲材料150,乙材料90,則在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品的利潤之和的最大值為____________元.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的圓臺(tái)中,是下底面圓的直徑,是上底面圓的直徑,是圓臺(tái)的一條母線

          (1)已知,分別為的中點(diǎn),求證平面

          (2)已知,,求二面角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)證明:當(dāng)時(shí),關(guān)于的不等式恒成立;

          (3)若正實(shí)數(shù)滿足,證明

          查看答案和解析>>

          同步練習(xí)冊答案