日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),

          (1)在如圖給定的直角坐標系內(nèi)畫出的圖象;
          (2)寫出的單調(diào)遞增區(qū)間.

          (1)略; (2)。

          解析試題分析:(1)函數(shù)的圖象如圖所示:
                       6分
          (2)觀察圖象可知,的單調(diào)遞增區(qū)間為。        12分
          考點:本題主要考查分段函數(shù)的概念及其圖象,函數(shù)的單調(diào)性。
          點評:簡單題,確定函數(shù)的單調(diào)區(qū)間,往往借助于函數(shù)的圖象觀察而得到。畫出函數(shù)圖象是關(guān)鍵。

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè),其中為正實數(shù).
          (1)當時,求的極值點;
          (2)若上的單調(diào)函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)求函數(shù)的單調(diào)區(qū)間
          (2)函數(shù)的圖象在處切線的斜率為若函數(shù)在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)是定義在上的函數(shù),當,且時,有
          (1)證明是奇函數(shù);
          (2)當時,(a為實數(shù)). 則當時,求的解析式;
          (3)在(2)的條件下,當時,試判斷上的單調(diào)性,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知,函數(shù)
          (1)若,寫出函數(shù)的單調(diào)遞增區(qū)間(不必證明);
          (2)若,當時,求函數(shù)在區(qū)間上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)
          (1)求,并求數(shù)列的通項公式.   
          (2)已知函數(shù)上為減函數(shù),設(shè)數(shù)列的前的和為,
          求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)函數(shù)
          (I)討論的單調(diào)性;
          (II)若有兩個極值點,記過點的直線的斜率為,問:是否存在,使得若存在,求出的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (1)若,,求證:;
          (2)若實數(shù)滿足.試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)
          (Ⅰ)作出函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的單調(diào)區(qū)間;以及在各單調(diào)區(qū)間上的增減性.
          (Ⅱ)求函數(shù)時的最大值與最小值.

          查看答案和解析>>