日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C的極坐標(biāo)方程為,點(diǎn)F1、F2為其左,右焦點(diǎn),直線(xiàn)的參數(shù)方程為(t為參數(shù),t∈R).

          (Ⅰ)求直線(xiàn)和曲線(xiàn)C的普通方程;

          (Ⅱ)求點(diǎn)F1、F2到直線(xiàn)的距離之和.

          解: (Ⅰ) 直線(xiàn)普通方程為

          ;          

          曲線(xiàn)的普通方程為.      

          (Ⅱ)∵,,

          ∴點(diǎn)到直線(xiàn)的距離  

          點(diǎn)到直線(xiàn)的距離

              

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)附加題:
          A.如圖,四邊形ABCD內(nèi)接于圓O,弧AB=弧AD,過(guò)A點(diǎn)的切線(xiàn)交CB的延長(zhǎng)線(xiàn)于E點(diǎn).
          求證:AB2=BE•CD.
          B.設(shè)數(shù)列{an},{bn}滿(mǎn)足an+1=3an+2bn,bn+1=2bn,且滿(mǎn)足
          an+4
          bn+4
          =M
          an
          bn
          ,試求二階矩陣M.
          C.已知橢圓C的極坐標(biāo)方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線(xiàn)l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線(xiàn)l的距離之和.
          D.已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請(qǐng)考生任選2題作答,滿(mǎn)分14分.如果多做,則按所做的前兩題記分.
          (1).選修4-2:矩陣與變換
          已知矩陣A=
          1a
          -1b
          ,A的一個(gè)特征值λ=2,其對(duì)應(yīng)的特征向量是α1=
          2
          1

          (Ⅰ)求矩陣A;
          (Ⅱ)若向量β=
          7
          4
          ,計(jì)算A2β的值.

          (2).選修4-4:坐標(biāo)系與參數(shù)方程
          已知橢圓C的極坐標(biāo)方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線(xiàn)l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線(xiàn)l的距離之和.
          (3).選修4-5:不等式選講
          已知x,y,z均為正數(shù).求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (坐標(biāo)系與參數(shù)方程選做題)
          已知橢圓C的極坐標(biāo)方程為ρ2=
          12
          3cos2θ+4sin2θ
          ,點(diǎn)F1、F2為其左,右焦點(diǎn),直線(xiàn)l的參數(shù)方程為
          x=2+
          2
          2
          t
          y=
          2
          2
          t
          (t為參數(shù),t∈R).
          (Ⅰ)求直線(xiàn)l和曲線(xiàn)C的普通方程;
          (Ⅱ)求點(diǎn)F1、F2到直線(xiàn)l的距離之和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
          A選修4-1:幾何證明選講
          如圖,延長(zhǎng)⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線(xiàn),E是切點(diǎn),過(guò)點(diǎn)B作DE的垂線(xiàn),垂足為點(diǎn)C.
          求證:∠ACB=
          1
          3
          ∠OAC.
          B選修4-2:矩陣與變換
          已知矩陣A=
          .
          11
          21
          .
          ,向量
          β
          =
          1
          2
          .求向量
          a
          ,使得A2
          a
          =
          β

          C選修4-3:坐標(biāo)系與參數(shù)方程
          已知橢圓C的極坐標(biāo)方程為ρ2=
          a
          3cos2θ+4sin2θ
          ,焦距為2,求實(shí)數(shù)a的值.
          D選修4-4:不等式選講
          已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
          (a+b+c)2
          3
          (a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三第四次高考仿真測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          選修4-4:極坐標(biāo)與參數(shù)方程:

          已知橢圓C的極坐標(biāo)方程為,點(diǎn)為其左,右焦點(diǎn),直線(xiàn)的參數(shù)方程為(為參數(shù),).

             (Ⅰ)求直線(xiàn)和曲線(xiàn)C的普通方程;

             (Ⅱ)求點(diǎn)到直線(xiàn)的距離之和.

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案