日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,邊長為2的正方形中,

          (1)點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于點(diǎn)。求證:
          (2)當(dāng)時(shí),求三棱錐的體積。

          (1)證明;(2)

          解析試題分析:(1)由題意,,∴,∴。
          (2)把當(dāng)作底面,因?yàn)榻?img src="http://thumb.zyjl.cn/pic5/tikupic/7c/9/okxys1.png" style="vertical-align:middle;" />=90°,所以為高;
          H垂直于EF,H為EF中點(diǎn)(等腰三角形三線合一);
          BE=BF=BC,;
          ,
          ,
          考點(diǎn):折疊問題,垂直關(guān)系,體積計(jì)算。
          點(diǎn)評(píng):中檔題,對(duì)于折疊問題,要特別注意“變”與“不變”的幾何元素,及幾何元素之間的關(guān)系。本題計(jì)算幾何體體積時(shí),應(yīng)用了“等體積法”,簡化了解題過程。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐中,底面為菱形,,的中點(diǎn)。

          (1)若,求證:平面
          (2)點(diǎn)在線段上,,試確定的值,使;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知矩形中,的中點(diǎn),沿將三角形折起,使.
          (Ⅰ)求證:平面
          (Ⅱ)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱柱中, 上的點(diǎn)且邊上的高.
          (Ⅰ)求證:平面;
          (Ⅱ)求證:;
          (Ⅲ)線段上是否存在點(diǎn),使平面?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,正方形所在的平面與正方形所在的平面相互垂直,、分別是的中點(diǎn).
           
          (1)求證:面;
          (2)求直線與平面所成的角正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知是正方形,⊥面,且是側(cè)棱的中點(diǎn).

          (1)求證∥平面;
          (2)求證平面平面;
          (3)求直線與底面所成的角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知三棱錐中,,平面分別是直線上的點(diǎn),且

          (1) 求二面角平面角的余弦值
          (2) 當(dāng)為何值時(shí),平面平面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在如圖所示的幾何體中,是邊長為2的正三角形,平面ABC,平面平面ABC,BD=CD,且

          (1)若AE=2,求證:AC∥平面BDE;
          (2)若二面角A—DE—B為60°.求AE的長。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在底面是正方形的四棱錐P—ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).

          (1)求證:BD⊥FG;
          (2)確定點(diǎn)G在線段AC上的位置,使FG//平面PBD,并說明理由.
          (3)當(dāng)二面角B—PC—D的大小為時(shí),求PC與底面ABCD所成角的正切值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案