日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某海域有兩個(gè)島嶼,島在島正東4海里處,經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)出過(guò)魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系

          1求曲線的標(biāo)準(zhǔn)方程;

          2某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)傳播速度相同,兩島收到魚群在處反射信號(hào)的時(shí)間比為,問(wèn)你能否確定處的位置即點(diǎn)的坐標(biāo)

          【答案】1;2點(diǎn)的坐標(biāo)為

          【解析】

          試題分析:1運(yùn)用題設(shè)直接求出的值即可獲解;2借助題設(shè)條件建立方程組求解

          試題解析:1由題意知曲線是以為焦點(diǎn)且長(zhǎng)軸長(zhǎng)為8的橢圓,又,則,故,所以曲線的方程是

          2由于兩島收到魚群發(fā)射信號(hào)的時(shí)間比為,因此設(shè)此時(shí)距兩島的距離分別比為,即魚群分別距兩島的距離為5海里3海里。

          設(shè),由,

          ,解得點(diǎn)的坐標(biāo)為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】水培植物需要一種植物專用營(yíng)養(yǎng)液.已知每投放)個(gè)單位的營(yíng)養(yǎng)液,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的營(yíng)養(yǎng)液濃度為每次投放的營(yíng)養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營(yíng)養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.

          (1)若只投放一次4個(gè)單位的營(yíng)養(yǎng)液,則有效時(shí)間可能達(dá)幾天?

          (2)若先投放2個(gè)單位的營(yíng)養(yǎng)液,3天后投放個(gè)單位的營(yíng)養(yǎng)液.要使接下來(lái)的2天中,營(yíng)養(yǎng)液能夠持續(xù)有效,試求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1當(dāng)時(shí),討論的單調(diào)性;

          2若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖幾何體是四棱錐,為正三角形,,,且

          1求證:平面平面

          2是棱的中點(diǎn),求證:平面;

          3求二面角的平面角的余弦值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

          日期

          12月1日

          12月2日

          12月3日

          12月4日

          12月5日

          溫度x

          10

          11

          13

          12

          8

          發(fā)芽數(shù)y

          23

          25

          30

          26

          16

          設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn)

          1求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;

          2若選取的是日與日的兩組數(shù)據(jù),請(qǐng)根據(jù)日與日的數(shù)據(jù),求關(guān)于的線性回歸方程;

          3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)2中所得的線性回歸方程是否可靠?

          注:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).

          (1)求的方程;

          (2)若點(diǎn)上,過(guò)的兩弦,若,求證: 直線過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的點(diǎn).

          (1)求證: 平面平面;

          (2)若的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>,記內(nèi)的整點(diǎn)個(gè)數(shù)為,(整點(diǎn)即橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

          (1)計(jì)算的值;

          (2)求數(shù)列的通項(xiàng)公式;

          (3)記數(shù)列的前項(xiàng)和為,且,若對(duì)于一切的正整數(shù),總有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)橢圓的焦點(diǎn)在軸上.

          (1)若橢圓的焦距為1,求橢圓的方程;

          (2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上第一象限內(nèi)的點(diǎn),直線軸于點(diǎn),并且.證明:當(dāng)變化時(shí),點(diǎn)在定直線上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案