已知定義在的函數(shù)
,在
處的切線斜率為
(Ⅰ)求及
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),
恒成立,求
的取值范圍.
(Ⅰ)的減區(qū)間為
,增區(qū)間為
,(Ⅱ)
.
解析試題分析:利用導(dǎo)數(shù)幾何意義求,利用導(dǎo)數(shù)的應(yīng)用求函數(shù)的單調(diào)區(qū)間;利用導(dǎo)數(shù)判斷最值的方法應(yīng)用于不等式恒成立問(wèn)題.
試題解析:(Ⅰ) 2分
由題可知,易知
, 3分
令,則
,則
為增函數(shù)所以
為
的唯一解. 4分
令
可知的減區(qū)間為
同理增區(qū)間為 6分
(Ⅱ)令
注:此過(guò)程為求最小值過(guò)程,方法不唯一,只要論述合理就給分,
若則
,
在
為增函數(shù),
則滿足題意; 9分
若則
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/8/1li6o2.png" style="vertical-align:middle;" />,
則對(duì)于任意,必存在
,使得
必存在使得
則
在
為負(fù)數(shù),
在
為減函數(shù),則
矛盾, 11分
注:此過(guò)程為論述當(dāng)時(shí)
存在減區(qū)間,方法不唯一,只要論述合理就給分;
綜上所述 12分
考點(diǎn):導(dǎo)數(shù)幾何意義,導(dǎo)數(shù)的應(yīng)用,不等式恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)當(dāng)時(shí),求
的極值;
(Ⅱ)若在區(qū)間
上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知 (
).
(1)當(dāng)時(shí),判斷
在定義域上的單調(diào)性;
(2)若在
上的最小值為
,求
的值;
(3)若在
上恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在區(qū)間
上存在極值點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)求證:.(
,
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
.
(Ⅰ)若,求函數(shù)
在區(qū)間
上的最值;
(Ⅱ)若恒成立,求
的取值范圍.
注:是自然對(duì)數(shù)的底數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè).
(Ⅰ)若,討論
的單調(diào)性;
(Ⅱ)時(shí),
有極值,證明:當(dāng)
時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),它的一個(gè)極值點(diǎn)是
.
(Ⅰ) 求的值及
的值域;
(Ⅱ)設(shè)函數(shù),試求函數(shù)
的零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1) 當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),求函數(shù)
在
上的最小值
和最大值
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com