日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知矩形中,,,將矩形沿對(duì)角線折起,使移到點(diǎn),且在平面上的射影恰好在上.

          (1)求證:;
          (2)求證:平面平面
          (3)求二面角的余弦值.

          (1)詳見解析;(2)詳見解析;(3)二面角的余弦值.

          解析試題分析:(1)利用折疊后點(diǎn)在平面內(nèi)的射影點(diǎn)在棱上得到平面,從而得到,再結(jié)合即可證明平面,進(jìn)而證明;(2)由(1)中的結(jié)論平面并結(jié)合平面與平面垂直的判定定理即可證明平面平面;(3)先作,連接,利用(1)中的結(jié)論平面得到,于是得到平面,于是得到為二面角的平面角,然后在直角三角形中計(jì)算,進(jìn)而確定二面角的余弦值;另一種方法是利用空間向量法計(jì)算二面角的余弦值.
          試題解析:(1)在平面上的射影上,平面,
          平面,
          ,,平面
          平面,;
          (2)四邊形是矩形,,
          由(1)知,,平面
          平面,平面平面;
          (3)平面,,在中,由,,得,
          過點(diǎn),垂足為點(diǎn),連接
          平面,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

          ⑴求證:;
          ⑵如果,求的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直三棱柱中,,為的中點(diǎn).

          (1)求證:∥平面;
          (2)求證:平面;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,是⊙的一條切線,切點(diǎn)為,都是⊙的割線,已知

          (1)證明:;
          (2)證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.

          (1)求證:PC⊥AC;
          (2)求二面角M﹣AC﹣B的余弦值;
          (3)求點(diǎn)B到平面MAC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF^PB交PB于點(diǎn)F,

          (1)求證:PA//平面EDB;
          (2)求證:PB^平面EFD;
          (3)求二面角C-PB-D的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (如圖,在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=60°,對(duì)角線AC與BD相交于點(diǎn)O,PO為四棱錐P﹣ABCD的高,且,E、F分別是BC、AP的中點(diǎn).

          (1)求證:EF∥平面PCD;
          (2)求三棱錐F﹣PCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點(diǎn).

          (1)求證:平面PAC⊥平面PBC;(6分)
          (2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,幾何體中,四邊形為菱形,,,面∥面,、都垂直于面,且,的中點(diǎn),的中點(diǎn).

          (1)求幾何體的體積;
          (2)求證:為等腰直角三角形;
          (3)求二面角的大小.

          查看答案和解析>>