已知為等差數(shù)列
的前
項(xiàng)和,
.
⑴求;
⑵求;
⑶求.
(1);(2)
;
(3).
解析試題分析:先由通項(xiàng)公式與的關(guān)系式
,求出數(shù)列
的通項(xiàng)公式
,注意檢驗(yàn)
的情形是否成立,由此得出,當(dāng)
時(shí),
,當(dāng)
時(shí),
.(1)
,代入
即可計(jì)算;(2)
,代入
即可解決;(3)需要對(duì)
進(jìn)行分類,當(dāng)
時(shí),
,當(dāng)
時(shí),
,代入
,問題得以解決.
試題解析:,
當(dāng)
時(shí),
,
當(dāng)時(shí),
,
當(dāng)時(shí),
,
.
由,得
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
.
⑴;
⑵;
⑶當(dāng)時(shí),
,
當(dāng)時(shí),
所以.
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2.等差數(shù)列的前項(xiàng)和公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前
項(xiàng)和
,數(shù)列
滿足
.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為
,且
,
(1).求數(shù)列的通項(xiàng)公式;
(2).若成等比數(shù)列,求正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等差數(shù)列,且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)記的前
項(xiàng)和為
,若
成等比數(shù)列,求正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,其公差d不為0,
和
的等差中項(xiàng)為11,且
,令
,數(shù)列
的前n項(xiàng)和為
.
(1)求及
;
(2)是否存在正整數(shù)m,n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an},,
,記
,
,
,若對(duì)于任意
,A(n),B(n),C(n)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,其前
項(xiàng)和為
,滿足
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4,
(1)求{an}的通項(xiàng)公式;
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com