日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓.

          (1)若橢圓的右焦點坐標(biāo)為,求的值;

          (2)由橢圓上不同三點構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點的橢圓的內(nèi)接等腰直角三角形恰有三個,求的取值范圍.

          【答案】(1) ;(2) .

          【解析】試題分析:(1)本問考查橢圓標(biāo)準(zhǔn)方程,先將橢圓方程化為標(biāo)準(zhǔn)形式, ,根據(jù)右焦點為,則,可以求出的值;(2)本問考查直線與橢圓位置關(guān)系,由題分析,則,因此BA所在直線斜率存在且不為0,可設(shè)的方程為,將直線方程與橢圓方程聯(lián)立,根據(jù)弦長公式求出,同理BC所在直線方程為,同理求出,根據(jù)等腰直角三角形有,整理得到關(guān)于的關(guān)系式,轉(zhuǎn)化為以為變量的方程有兩個不相等的正實根問題,求的取值范圍.

          試題解析:(1)橢圓的方程可以寫成,因為焦點軸上,所以,求得.

          (2)設(shè)橢圓內(nèi)接等腰直角三角形的兩直角邊分別為設(shè),顯然不與坐標(biāo)軸平行,且,所以可設(shè)直線的方程為,則直線的方程為,由,消去得到,所以,求得.同理可求,因為為以為直角頂點的等腰直角三角形,所以.所以,整理得

          ,所以,由此

          ,所以,設(shè),因為以為直角頂點的橢圓內(nèi)接等腰直角三角形恰有三個,所以關(guān)于的方程有兩個不同的正實根,且都不為.所以,解得實數(shù)的取值范圍是.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知袋中裝有大小相同的2個白球、2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球?qū)?yīng)的分值相加后稱為該局的得分,計算完得分后將球放回袋中.當(dāng)出現(xiàn)第局得分()的情況就算游戲過關(guān),同時游戲結(jié)束,若四局過后仍未過關(guān),游戲也結(jié)束.

          (1)求在一局游戲中得3分的概率;

          (2)求游戲結(jié)束時局?jǐn)?shù)的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a0,a1.設(shè)命題p:函數(shù)yloga(x1)(0,+)內(nèi)單調(diào)遞減;命題q:曲線yx2(2a3)x1x軸交于不同的兩點.若pq為真,pq為假,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【2015高考湖北(理)20】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)兩種奶制品.生產(chǎn)1噸產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時,獲利1000元;生產(chǎn)1噸產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時,獲利1200元.要求每天產(chǎn)品的產(chǎn)量不超過產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)兩種產(chǎn)品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為

          W

          12

          15

          18

          P

          0.3

          0.5

          0.2

          該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利(單位:元)是一個隨機變量.

          )求的分布列和均值;

          若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點A(1,1),B(2,﹣1).
          (1)求函數(shù)f(x)的解析式;
          (2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
          (3)求f(x)在區(qū)間[ ,1]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,有下列說法:
          ①若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
          ②若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點;
          ③若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點;
          ④若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個零點;
          其中正確說法的序號是(把所有正確說法的序號都填上).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線 與橢圓 在第一象限的交點為, 為坐標(biāo)原點, 為橢圓的右頂點, 的面積為.

          求拋物線的方程;

          點作直線、 兩點,射線、分別交、兩點,記的面積分別為,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
          A.
          與g(x)=x﹣1
          B.f(x)=2|x|與
          C.

          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= sin2x+2cos2x+m(0≤x≤ ).
          (1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
          (2)若函數(shù)f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
          (3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數(shù)g(x)的零點個數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案