日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓,若橢圓的右頂點為圓的圓心,離心率為
          (1)求橢圓C的方程;
          (2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

          (1)   (2)  

          解析試題分析:,
          (1)從圓的標(biāo)準(zhǔn)方程得到圓心的坐標(biāo)即為橢圓的右頂點,即可得到a值,再由橢圓離心率、a值結(jié)合、abc之間的關(guān)系可得到b值,即得到橢圓的標(biāo)準(zhǔn)方程
          (2)聯(lián)立直線與橢圓方程并利用弦長公式可用斜率k表示弦長|AB|,|GH|.由對稱性得到|AB|=|GH|,得到r關(guān)于k的表達(dá)式,再根據(jù)表達(dá)式可以利用函數(shù)值域求法中的換元法解得r的取值范圍.
          試題解析:
          (1)設(shè)橢圓的焦距為2C,因為a=,,,所以橢圓C的方程為.
          (2)設(shè)A,聯(lián)立直線與橢圓方程得,則,又因為點M()到直線l的距離d=。所以,顯然若點H也在直線AB上,則由對稱性可知,直線y=kx就是y軸與已知矛盾,所以要使得|AG|=|BH|,只要|AB|=|GH|,所以,
          當(dāng)k=0時,,當(dāng)k時, ,由于,綜上.
          考點:橢圓方程極其性質(zhì) 弦長

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系xOy中,F是拋物線Cx2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為.
          (1)求拋物線C的方程.
          (2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
          (1)求曲線的軌跡方程;
          (2)過點的直線交曲線、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6,直線與橢圓相交于兩點.
          (1)求橢圓的方程;
          (2)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)一個焦點為,且離心率的橢圓上下兩頂點分別為,直線交橢圓兩點,直線與直線交于點.
          (1)求橢圓的方程;
          (2)求證:三點共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率為,直線與圓相切.
          (1)求橢圓的方程;
          (2)設(shè)直線與橢圓的交點為,求弦長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左、右焦點分別為,離心率為,P是橢圓上一點,且面積的最大值等于2.
          (1)求橢圓的方程;
          (2)過點M(0,2)作直線與直線垂直,試判斷直線與橢圓的位置關(guān)系5
          (3)直線y=2上是否存在點Q,使得從該點向橢圓所引的兩條切線相互垂直?若存在,求點Q的坐標(biāo);若不存在,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且△的面積為
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于兩點,直線與直線的交點為,證明:點總在直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C:的離心率為,長軸長為.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)若直線交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足,若存在,求出點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案