【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)當(dāng)p=1時,若拋物線C上存在關(guān)于直線l對稱的相異兩點(diǎn)P和Q.求線段PQ的中點(diǎn)M的坐標(biāo).
【答案】(1);(2)
【解析】試題分析:(1)由點(diǎn)在直線
上,得
,即
.,從而可求得拋物線方程;(2)當(dāng)
時,曲線
.設(shè)
,
,線段
的中點(diǎn)
,由點(diǎn)
和
關(guān)于直線
對稱,可得直線
的斜率為
,設(shè)其方程為
,由
,可得
,根據(jù)韋達(dá)定理可得
的坐標(biāo).
試題解析:(1)拋物線的焦點(diǎn)為
由點(diǎn)在直線
上,
得,即
.
所以拋物線的方程為
.
(2)當(dāng)時,曲線
.
設(shè),
,線段
的中點(diǎn)
因?yàn)辄c(diǎn)和
關(guān)于直線
對稱,所以直線
垂直平分線段
,
于是直線的斜率為-1,設(shè)其方程為
,
由,消去
得
,
由和
是拋物線
的兩相異點(diǎn),得
,
從而,
因此,所以
,
又在直線
上,所以
所以點(diǎn),此時
滿足
式,
故線段的中點(diǎn)
的坐標(biāo)為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第1組[157.5,162.5),第2組[162.5,167.5),…,第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.
(1)試評估該校高三年級男生的平均身高;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ~N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x,
(1)試畫出f(x),x∈[-3,5]的圖象;
(2)求f(37.5);
(3)常數(shù)a∈(0,1),y=a與f(x),x∈[-3,5]的圖象相交,求所有交點(diǎn)橫坐標(biāo)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集上的函數(shù)
滿足
,且
的導(dǎo)函數(shù)
,則不等式
的解集為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
為實(shí)數(shù).
(1)已知函數(shù)是奇函數(shù),直線
是曲線
的切線,且
,
,求直線
的方程;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足。
(1)求證:A,B,C三點(diǎn)共線;
(2)若A(1,cosx),B(1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=
(2m+
)|
|+m2的最小值為5,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太原五中是一所有著百年歷史的名校,圖1是某一階段來我校參觀學(xué)習(xí)的外校人數(shù)統(tǒng)計莖葉圖,第1次到第14次參觀學(xué)習(xí)人數(shù)依次記為A1 , A2 , …,A14 , 圖2是統(tǒng)計莖葉圖中人數(shù)在一定范圍內(nèi)的一個算法流程圖,那么算法流程圖輸出的結(jié)果是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1 .
(1)求證:A1B⊥AD;
(2)若AD=AB=2BC,∠A1AB=60°,點(diǎn)D在平面ABB1A1上的射影恰為線段A1B的中點(diǎn),求平面DCC1D1與平面ABB1A1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中a>0且a≠1).
(1)求函數(shù)f(x)的奇偶性,并說明理由;
(2)若,當(dāng)x∈
時,不等式
恒成立,求實(shí)數(shù)m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com