【題目】設(shè)是兩條不同的直線,
是三個(gè)不同的平面,給出下列四個(gè)命題:
①若則
②若則
③若則
④若則
其中正確命題的序號(hào)是( )
A.①和③B.②和③C.②和④D.①和④
【答案】A
【解析】
根據(jù)線面平行性質(zhì)定理,結(jié)合線面垂直的定義,可得①正確;在正方體中舉出反例,平行于同一個(gè)平面的兩條直線不一定平行,可得②錯(cuò)誤;由面面平行的傳遞性,可得③正確;在正方體中舉出反例,可得④錯(cuò)誤.
對①,因?yàn)?/span>,所以經(jīng)過
作平面
,使
,可得
,又因?yàn)?/span>
,
,所以
,結(jié)合
得
.由此可得①正確;
對②,設(shè)直線、
是位于正方體上底面所在平面內(nèi)的相交直線,而平面
是正方體下底面所在的平面,則有
且
成立,但不能推出
,故②錯(cuò)誤;
對③,因?yàn)?/span>,所以
,故③正確;
對④,設(shè)平面、
、
是位于正方體經(jīng)過同一個(gè)頂點(diǎn)的三個(gè)面,則有
且
,但是
相交,推不出
,故④錯(cuò)誤.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)
與橢圓
:
的一個(gè)焦點(diǎn)重合,點(diǎn)
在拋物線上,過焦點(diǎn)
的直線
交拋物線于
、
兩點(diǎn).
(Ⅰ)求拋物線的方程以及
的值;
(Ⅱ)記拋物線的準(zhǔn)線與
軸交于點(diǎn)
,試問是否存在常數(shù)
,使得
且
都成立?若存在,求出實(shí)數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實(shí)數(shù)
的取值范圍;
(2)若正數(shù)滿足
,
為(1)中m可取到的最大值,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對角線AC分別與AB,AD所成的角為α,β,則sin2α+sin2β=1,在長方體ABCD﹣A1B1C1D1中,對角線AC1與棱AB,AD,AA1所成的角分別為α1,α2,α3,與平面AC,平面AB1,平面AD1所成的角分別為β1,β2,β3,則下列說法正確的是( 。
①sin2α1+sin2α2+sin2α3=1 、sin2α1+sin2α2+sin2α3=2
③cos2α1+cos2α2+cos2α3=1 、sin2β1+sin2β2+sin2β3=1
A. ①③B. ②③C. ①③④D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一段圖象如圖所示.
(1)求該函數(shù)的解析式;
(2)求該函數(shù)的單調(diào)增區(qū)間;
(3)該函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移和伸縮變換得到的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體的四個(gè)頂點(diǎn)都在半徑為
的球面上,
是球的直徑,且
,則四面體
的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓
內(nèi)一個(gè)定點(diǎn),
是圓上任意一點(diǎn).線段
的垂直平分線和半徑
相交于點(diǎn)
.
(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)
的軌跡
是什么曲線?并求出其軌跡方程;
(Ⅱ)過點(diǎn)作直線
與曲線
交于
、
兩點(diǎn),點(diǎn)
關(guān)于原點(diǎn)
的對稱點(diǎn)為
,求
的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測試,為了解參加測試學(xué)生的成績情況,從中隨機(jī)抽取20名學(xué)生的測試成績作為樣本,規(guī)定成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:
(1)求的值和樣本的平均數(shù);
(2)從該樣本成績優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績至少有一個(gè)落在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,對一切正整數(shù)
,點(diǎn)
都在函數(shù)
的圖象上,記
與
的等差中項(xiàng)為
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)設(shè)集合,
,等差數(shù)列
的任意一項(xiàng)
,其中
是
中的最小數(shù),且
,求
的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com