日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足an+1=2an-1且a1=3,bn=
          an-1anan+1
          ,數(shù)列{bn}的前n項(xiàng)和為Sn
          (1)求證數(shù)列{an-1}是等比數(shù)列;
          (2)求{an}的通項(xiàng)公式;
          (3)求數(shù)列{bn}的前n項(xiàng)和Sn
          分析:(1)由an+1=2an-1進(jìn)行變形即得an+1-1=2(an-1),由此形式即可判斷出數(shù)列{an-1}是等比數(shù)列;
          (2)求{an}的通項(xiàng)公式,可以根據(jù)(1)的結(jié)論先求出an-1,解方程即得{an}的通項(xiàng)公式;
          (3)求數(shù)列{bn}的前n項(xiàng)和Sn.先求{bn}的通項(xiàng)公式,根據(jù)其形式發(fā)現(xiàn),數(shù)列{bn}的前n項(xiàng)和為Sn可用累加法求得.
          解答:解:(1)∵a1=3,an+1=2an-1,
          ∴an+1-1=2(an-1),
          ∴{an-1}是以a1-1=2為首項(xiàng),以2為公比的等比數(shù)列.(4分)
          (2)由(1)知:∴an-1=2•2n-1=2n,∴an=2n+1 (8分)
          (3)由題意及(2)得bn=
          2n
          anan+1
          =
          2n
          (2n+1)(2n+1+1)
          =
          1
          2n+1
          -
          1
          2n+1+1
          ,(8分)
          Sn=(
          1
          21+1
          -
          1
          22+1
          )+(
          1
          22+1
          -
          1
          23+1
          )++(
          1
          2n+1
          -
          1
          2n+1+1
          )
          =
          1
          3
          -
          1
          2n+1+1
          (13分)
          點(diǎn)評:本題考查證明數(shù)列的等比的性質(zhì),利用等比數(shù)列的求和公式求和,及根據(jù)數(shù)列的通項(xiàng)形式選擇合適的方法求和,本題是數(shù)列中有一定綜合性的題目.在第一問及第三問中對觀察變形的能力要求較高,做題時用心體會一下.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an;
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊答案