科目: 來源: 題型:
【題目】如圖,已知拋物線,設(shè)直線
經(jīng)過點(diǎn)
且與拋物線
相交于
兩點(diǎn),拋物線
在
、
兩點(diǎn)處的切線相交于點(diǎn)
,直線
,
分別與
軸交于
、
兩點(diǎn).
(1)求點(diǎn)的軌跡方程
(2)當(dāng)點(diǎn)不在
軸上時,記
的面積為
,
的面積為
,求
的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率e滿足
,以坐標(biāo)原點(diǎn)為圓心,橢圓C的長軸長為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)過點(diǎn)P(0,1)的動直線(直線
的斜率存在)與橢圓C相交于A,B兩點(diǎn),問在y軸上是否存在與點(diǎn)P不同的定點(diǎn)Q,使得
恒成立?若存在,求出定點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某人玩擲正方體骰子走跳棋的游戲,已知骰子每面朝上的概率都是,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,選手每擲一次骰子,棋子向前跳動一次,若擲出朝上的點(diǎn)數(shù)為1或2,棋子向前跳兩站;若擲出其余點(diǎn)數(shù),則棋子向前跳一站,直到跳到第99站或第100站時,游戲結(jié)束;設(shè)游戲過程中棋子出現(xiàn)在第
站的概率為
.
(1)當(dāng)游戲開始時,若拋擲均勻骰子3次后,求棋子所走站數(shù)之和X的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)若最終棋子落在第99站,則記選手落敗,若最終棋子落在第100站,則記選手獲勝,請分析這個游戲是否公平.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖放置的邊長為2的正方形ABCD沿
軸滾動(無滑動滾動),點(diǎn)D恰好經(jīng)過坐標(biāo)原點(diǎn),設(shè)頂點(diǎn)
的軌跡方程是
,則對函數(shù)
的判斷正確的是( )
A.函數(shù)在
上有兩個零點(diǎn)
B.函數(shù)是偶函數(shù)
C.函數(shù)在
上單調(diào)遞增
D.對任意的,都有
查看答案和解析>>
科目: 來源: 題型:
【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應(yīng)用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學(xué)發(fā)展和世界糧食供給做出了杰出貢獻(xiàn);某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是( )
A.該地水稻的平均株高為100cm
B.該地水稻株高的方差為10
C.隨機(jī)測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大
D.隨機(jī)測量一株水稻,其株高在(80,90)和在(100,110)(單位:cm)的概率一樣大
查看答案和解析>>
科目: 來源: 題型:
【題目】在脫貧攻堅(jiān)中,某市教育局定點(diǎn)幫扶前進(jìn)村戶貧困戶.駐村工作隊(duì)對這
戶村民的貧困程度以及家庭平均受教育程度進(jìn)行了調(diào)査,并將該村貧困戶按貧困程度分為“絕對貧困戶”與“相對貧困戶”,同時按家庭平均受教育程度分為“家庭平均受教育年限
年”與“家庭平均受教育年限
年”,具體調(diào)査結(jié)果如下表所示:
平均受教育年限 | 平均受教育年限 | 總計(jì) | |
絕對貧困戶 | 10 | 40 | 50 |
相對貧困戶 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
(1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動,現(xiàn)通過分層抽樣從“家庭平均受教育年限年”的
戶貧困戶中任意抽取
戶,再從所抽取的
戶中隨機(jī)抽取
戶參加“談心談話”活動,求至少有
戶是絕對貧困戶的概率;
(2)根據(jù)上述表格判斷:是否有的把握認(rèn)為貧困程度與家庭平均受教育程度有關(guān)?
參考公式:
參考數(shù)據(jù):
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”,國時期吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形
若直角三角形中較小的銳角
,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機(jī)地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com