日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 廣東省2007―2008學(xué)年第一學(xué)期期末高三五校聯(lián)考

          數(shù)學(xué)試題(理科)

          第一部分  選擇題(共40分)

          一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)是符合題目要求的.

          1.若集合,,則=

          A.       B.        C.        D.

          試題詳情

          2.在復(fù)平面內(nèi),復(fù)數(shù) 對(duì)應(yīng)的點(diǎn)位于

          A.第一象限     B.第二象限            C.第三象限      D.第四象限

          試題詳情

          3.已知,則的值等于    

          A.           B.1              C.2              D.3

          試題詳情

          4.已知三條不重合的直線m、n、l兩個(gè)不重合的平面,有下列命題

          ①若;            ②若;

          ③若; ④若;

          其中正確的命題個(gè)數(shù)是                                                                                 

          A.1                          B.2                          C.3                        D.4

          試題詳情

          5.已知數(shù)列、都是公差為1的等差數(shù)列,其首項(xiàng)分別為、,且,,,則數(shù)列前10項(xiàng)的和等于

          A.55              B.70                C.85              D.100

          試題詳情

          6.定義行列式運(yùn)算=. 將函數(shù)的圖象向左平移()個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則的最小值為   

              A.                     B.                     C.                   D.

          試題詳情

          7.定義在上的函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,對(duì)任意的實(shí)數(shù)都有,且,則的值為

              A                   B                  C0                        D1

          試題詳情

          8.對(duì)任意正整數(shù),定義的雙階乘如下:

          當(dāng)為偶數(shù)時(shí),

          當(dāng)為奇數(shù)時(shí),`

          現(xiàn)有四個(gè)命題:①,  ②,

          ③個(gè)位數(shù)為0,         ④個(gè)位數(shù)為5

          其中正確的個(gè)數(shù)為

          A.1                B.2               C.3                D.4

          第二部分 非選擇題(共110分

          試題詳情

          二、填空題:本大題共7小題,其中9~12題是必做題,13~15題是選做題. 每小題5分,滿分30分.

          9.若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則的值為          

          試題詳情

          11.在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,

          則;類比此性質(zhì),如圖,在四

          面體P―ABC中,若PA,PB,PC兩兩垂直,底

          面ABC上的高為h,則得到的正確結(jié)論為                                   ;

          試題詳情

          12.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把名使用血清的人與另外名未用血清的人一年中的感冒記錄作比較,提出假設(shè):“這種血清不能起到預(yù)防感冒的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.

          對(duì)此,四名同學(xué)做出了以下的判斷:

          p:有的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”

          q:若某人未使用該血清,那么他在一年中有的可能性得感冒

          r:這種血清預(yù)防感冒的有效率為    

          s:這種血清預(yù)防感冒的有效率為 

          則下列結(jié)論中,正確結(jié)論的序號(hào)是           .(把你認(rèn)為正確的命題序號(hào)都填上)

          (1)  p∧?q ;               (2)?p∧q ;       

          (3)(?p∧?q)∧(r∨s);   (4)(p∨?r)∧(?q∨s)

          ▲選做題:在下面三道小題中選做兩題,三題都選的只計(jì)算前兩題的得分.

          試題詳情

          13.(坐標(biāo)系與參數(shù)方程選做題) 已知圓的極坐標(biāo)方程為,則該圓的圓心到直線 的距離是                  .

          試題詳情

          14.(不等式選講選做題) 已知g(x)=|x-1|-|x-2|,則g(x)的值域?yàn)?u>                    ;

          試題詳情

          15.(幾何證明選講選做題) 如圖:PA與圓O相切于A,

          PCB為圓O的割線,并且不過圓心O,已知∠BPA=,

          PA=,PC=1,則圓O的半徑等于               

           

          試題詳情

          三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明、演算步驟或推證過程.

          16.(本小題滿分12分)  在△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知a+b=5,c =,且    (1) 求角C的大。    (2)求△ABC的面積.

           

           

           

           

           

           

           

           

           

          試題詳情

          17.(本小題滿分12分)一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)定義域?yàn)镽的函數(shù):

          (1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;

          (2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

           

           

           

           

           

           

           

           

          試題詳情

          18.(本小題滿分14分) 已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn)。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .

          (1) 當(dāng)x=2時(shí),求證:BD⊥EG ;

          (2) 若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;

          (3) 當(dāng) f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

           

           

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

          19.(本小題滿分14分) 橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e = ,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-e, 直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A、B,且.(1)求橢圓方程;  (2)若,求m的取值范圍.

           

           

           

           

           

           

           

           

           

           

          試題詳情

          20.(本小題滿分14分)已知數(shù)列的前n項(xiàng)和滿足:(a為常數(shù),且).  (Ⅰ)求的通項(xiàng)公式;

          (Ⅱ)設(shè),若數(shù)列為等比數(shù)列,求a的值;

          (Ⅲ)在滿足條件(Ⅱ)的情形下,設(shè),數(shù)列的前n項(xiàng)和為Tn .

          求證:.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          試題詳情

          21.(本小題滿分14分) 已知函數(shù)

          (I)若 在其定義域是增函數(shù),求b的取值范圍;

          (II)在(I)的結(jié)論下,設(shè)函數(shù)的最小值;

          (III)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說明理由.

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          2007―2008學(xué)年第一學(xué)期期末高三五校聯(lián)考

          數(shù)學(xué)科(理科)試題答案

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          答案

          B

          B

          D

          B

          C

          C

          D

          C

           

          試題詳情

          一、選擇題:(本大題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。)

          1、解析: B.本題考查了定義域及交集運(yùn)算

          ={-1<x<1},  N={0≤x<1} 

          試題詳情

          2. 解析:B.本題考查了復(fù)數(shù)的概念及運(yùn)算

            原式=

          試題詳情

          3.解析:D.本題考查了函數(shù)概念及分段函數(shù)

          試題詳情

          4.解析:B.本題考查了直線和平面的基本位置關(guān)系.

          ②,④正確;①,③錯(cuò)誤

          試題詳情

          5.解析:C.本題考查了等差數(shù)列的通項(xiàng)及前項(xiàng)和計(jì)算.

          因此,數(shù)列 也是等差數(shù)列,并且前10項(xiàng)和等于:

          試題詳情

          6. 解析:C.本題考查了信息的處理、遷移和應(yīng)用能力以及三角函數(shù)的基礎(chǔ)知識(shí).

          試題詳情

          =2cos(x+)    左移 n       2cos(x+n+)  ,  因此,n=

          試題詳情

          7. 解析:D.本題考查了函數(shù)的對(duì)稱性和周期性.

          由,得,因此,是周期函數(shù),并且周期是3

          函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱, 因此,=-,所以,

          ,=

          試題詳情

          8.解析:C.本題考查了信息處理和應(yīng)用能力.

          因?yàn)?nbsp; 

          所以,有

          因此,①,③,④正確;②錯(cuò)誤

          第二部分 非選擇題(共110分)

          試題詳情

          二、填空題:本大題共7小題,其中9~12題是必做題,13~15題是選做題. 每小題5分,滿分30分.

          9.  解析:6.本題考查了拋物線和雙曲線的有關(guān)基本知識(shí).

          雙曲線的右焦點(diǎn)F(3,0)是拋物線的焦點(diǎn),所以,,p=6

          試題詳情

          10.解析:-192.本題考查了簡(jiǎn)單定積分的計(jì)算以及求二項(xiàng)式展開式的指定項(xiàng)的基本方法.

          ==2 ,  T=(-1) ()()=(-1) 2x

          試題詳情

          令3-r=2,得r=1 , 因此,展開式中含項(xiàng)的系數(shù)是-192.

          試題詳情

          11.解析:.本題考查了合情推理的能力.

           

          連接CO且延長(zhǎng)交AB于點(diǎn)D,連PD,

          由已知PC⊥PD,在直角三角形PDC中,DC?h=PD?PC,

          即,

          容易知道 AB⊥平面PDC,所以AB⊥PD,

          在直角三角形APB中,AB?PD=PA?PB,所以,

          ,故。

          (也可以由等體積法得到)

          試題詳情

          12.解析:(1)(4).本題考查了獨(dú)立性檢驗(yàn)的基本思想及常用邏輯用語.由題意,得,,所以,只有第一位同學(xué)的判斷正確,即:有的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”.由真值表知(1)(4)為真命題.

          ▲選做題:在下面三道小題中選做兩題,三題都選的只計(jì)算前兩題的得分.(其中14題第一空3分,第二空2分)

          試題詳情

          13.解析:.本題考查了簡(jiǎn)單的直線和圓的極坐標(biāo)方程以及它們的基本知識(shí).

          直線 化為直角坐標(biāo)方程是2x+y-1=0; 圓的圓心(1,0)

          到直線2x+y-1=0的距離是

          試題詳情

          14. 解析:  [-1,1] ; .本題考查絕對(duì)值的意義,含參絕對(duì)值不等式的解法.

          當(dāng)x≤1時(shí),g(x)=|x-1|-|x-2|=-1

          當(dāng)1<x≤2時(shí),g(x)=|x-1|-|x-2|=2x-3,所以-1<≤1

          當(dāng)x>2時(shí),g(x)=|x-1|-|x-2|=1

          綜合以上,知-1≤g(x) ≤1。

          (此結(jié)果也可以由絕對(duì)值的幾何意義直接得出)

          所以  .

          試題詳情

          15.解析:7.本題考查了圓和切線的基本知識(shí).

          試題詳情

          由圓的性質(zhì)PA=PC?PB,得,PB=12,連接OA并反向延長(zhǎng)

          交圓于點(diǎn)E,在直角三角形APD中可以求得PD=4,DA=2,故CD=3,

          DB=8,J記圓的半徑為R,由于ED?DA=CD?DB

          因此,(2R-2) ?2=3?8,解得R=7

          試題詳情

          三、解答題:

          16.(本小題滿分12分)

          (1) 解:∵A+B+C=180°

              由  …………1分

              ∴   ………………3分

              整理,得   …………4分

          解 得:   ……5分

              ∵  ∴C=60°   ………………6分

          (2)解:由余弦定理得:c2=a2+b2-2abcosC,即7=a2+b2-ab  …………7分

          ∴   ………………8分 

          由條件a+b=5得 7=25-3ab …… 9分     

          ……10分

          ∴   …………12分

          試題詳情

          17.(本小題滿分12分)

          解:(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知 ………………………………………………………………4分

          試題詳情

             (2)ξ可取1,2,3,4.

              ,

              ; …………8分

              故ξ的分布列為

          ξ

          1

          2

          3

          4

          P

                                      ……………………………………………………………10分

             

              答:ξ的數(shù)學(xué)期望為 ………………………………………………………………12分

           

          試題詳情

          18.(本小題滿分14分)

          解:(1)(法一)∵平面平面,AE⊥EF,∴AE⊥面平面,AE⊥EF,AE⊥BE,又BE⊥EF,故可如圖建立空間坐標(biāo)系E-xyz! 1分

          則A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0)…………2分

           

           

           

           

           

           

           

           

          (-2,2,2),(2,2,0)…………………………………………………3分

          (-2,2,2)(2,2,0)=0,∴ ……………………………4分

          (法二)作DH⊥EF于H,連BH,GH,……………1分

          由平面平面知:DH⊥平面EBCF,

          而EG平面EBCF,故EG⊥DH。

          又四邊形BGHE為正方形,∴EG⊥BH,

          BHDH=H,故EG⊥平面DBH,………………… 3分

          而BD平面DBH,∴ EG⊥BD! 4分

          (或者直接利用三垂線定理得出結(jié)果)

          (2)∵AD∥面BFC,

          所以 VA-BFC==4(4-x)x

          ………………………………………………………………………7分

          即時(shí)有最大值為!8分

          (3)(法一)設(shè)平面DBF的法向量為,∵AE=2, B(2,0,0),D(0,2,2),

          _

          E

          則 ,

          即,

          取x=3,則y=2,z=1,∴ 

           面BCF的一個(gè)法向量為         ……………………………12分

          則cos<>=  …………………………………………13分

          由于所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為- ………………………………………………………………………………14分

          (法二)作DH⊥EF于H,作HM⊥BF,連DM。

          由三垂線定理知 BF⊥DM,∴∠DMH是二面角D-BF-C的平面角的補(bǔ)角。             ………………………………………………………………9分

          由△HMF∽△EBF,知,而HF=1,BE=2,,∴HM=。

          又DH=2,

          ∴在Rt△HMD中,tan∠DMH=-,

          因∠DMH為銳角,∴cos∠DMH=,  ………………………………13分

          而∠DMH是二面角D-BF-C的平面角的補(bǔ)角,

          故二面角D-BF-C的余弦值為-。     ………………………………14分

          試題詳情

          19.(本小題滿分14分)

           解:(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

          ∴a=1,b=c=,

          故C的方程為:y2+=1      ………………………………………4分

          (2)由=λ得-=λ(-),(1+λ)=+λ,

          ∴λ+1=4,λ=3             ………………………………………………6分

          設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2

          得(k2+2)x2+2kmx+(m2-1)=0

          Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

          x1+x2=, x1x2=   ………………………………………………9分

          ∵=3 ∴-x1=3x2

          消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

          整理得4k2m2+2m2-k2-2=0   ………………………………………………11分

          m2=時(shí),上式不成立;m2≠時(shí),k2=,

          因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

          容易驗(yàn)證k2>2m2-2成立,所以(*)成立

          即所求m的取值范圍為(-1,-)∪(,1)     ………………………14分

          試題詳情

          20.(本小題滿分14分)

          解:(Ⅰ)∴

          當(dāng)時(shí),

          ,即是等比數(shù)列. ∴;         ……………………4分

          (Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

           則有而

          故,解得,    ………………………………7分

          再將代入得成立,

          所以.       ………………………………………………………………8分

          (III)證明:由(Ⅱ)知,所以

          ,     ………………………………………………… 9分

          由得

          所以,       …………………… 12分

          從而

          即.                                 …………………………14分

          試題詳情

          21.解:(I)依題意:

          在(0,+)上是增函數(shù),

          對(duì)x∈(0,+)恒成立,                  …………2分

                                                                    …………4分

             (II)設(shè)

          當(dāng)t=1時(shí),ym I n=b+1;                                                                       …………6分

          當(dāng)t=2時(shí),ym I n=4+2b                                                                         …………8分

          當(dāng)?shù)淖钚≈禐?nbsp;                                               …………9分

             (III)設(shè)點(diǎn)P、Q的坐標(biāo)是

          則點(diǎn)M、N的橫坐標(biāo)為

          C1在點(diǎn)M處的切線斜率為

          C2在點(diǎn)N處的切線斜率為         …………10分

          假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,則

           

          ……………11分

          設(shè) ……………… ①          …………12分

          這與①矛盾,假設(shè)不成立.

          故C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線不平行.                          …………14分

           

           

           

           

          試題詳情

            1. <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>