日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=4sin(2x-
          π
          3
          )+1
          ,給定條件p:
          π
          4
          ≤x≤
          π
          2
          ,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
           

          查看答案和解析>>

          已知△ABC的外接圓的圓心O,BC>CA>AB,則
          OA
          OB
          ,
          OA
          OC
          ,
          OB
          OC
          的大小關(guān)系為
           

          查看答案和解析>>

          已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對(duì)任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
          52
          ))的值是
           

          查看答案和解析>>

          15、已知y=2x,x∈[2,4]的值域?yàn)榧螦,y=log2[-x2+(m+3)x-2(m+1)]定義域?yàn)榧螧,其中m≠1.
          (Ⅰ)當(dāng)m=4,求A∩B;
          (Ⅱ)設(shè)全集為R,若A⊆CRB,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          已知y=f(x)是定義在[-1,1]上的奇函數(shù),x∈[0,1]時(shí),f(x)=
          4x+a
          4x+1

          (Ⅰ)求x∈[-1,0)時(shí),y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
          (Ⅱ)解不等式f(x)>
          1
          5

          查看答案和解析>>

          一.選擇題

          1―5  CBABA   6―10  CADDA

          二.填空題

          11.       12.()       13.2          14.         15.

          16.(1,4)

          三.解答題

          數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

                  ?,                                        (4分)

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          ?

                  cos              =

           

                  由,  ,    即B=              (6分)

                                                         (7分)

                                                                  (9分)

                                                                  (11分)

          的取值范圍是(,1                                                      (13分)

          18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

          由橢圓,求得兩焦點(diǎn),                                           (3分)

          ,又為一條漸近線

          , 解得:                                                     (5分)

                                                              (6分)

          ②設(shè),則                                                      (7分)

                

          ?                             (9分)

          ,  ?              (10分)

                                                          (11分)

            ?

          ?                                        (13分)

            1.   單減區(qū)間為[]        (6分)

               

              ②(i)當(dāng)                                                      (8分)

              (ii)當(dāng),

              ,  (),

              則有                                                                     (10分)

              ,

                                                             (11分)

                在(0,1]上單調(diào)遞減                     (12分)

                                                               (13分)

              20.解:①       

                                                                      (2分)

              從而數(shù)列{}是首項(xiàng)為1,公差為C的等差數(shù)列

                即                                (4分)

               

                 即………………※              (6分)

              當(dāng)n=1時(shí),由※得:c<0                                                    (7分)

              當(dāng)n=2時(shí),由※得:                                                 (8分)

              當(dāng)n=3時(shí),由※得:                                                 (9分)

              當(dāng)

                  (

                                                        (11分)

                                       (12分)

              綜上分析可知,滿足條件的實(shí)數(shù)c不存在.                                    (13分)

              21.解:①設(shè)過(guò)A作拋物線的切線斜率為K,則切線方程:

                                                                              (2分)

                  即

                                                                                                                 (3分)

              ②設(shè)   又

                   

                                                                       (4分)

              同理可得 

                                                              (5分)

              又兩切點(diǎn)交于 

                                             (6分)

              ③由  可得:

               

                                                              (8分)

                                (9分)

               

              當(dāng) 

              當(dāng) 

                                                                   (11分)

              當(dāng)且僅當(dāng),取 “=”,此時(shí)

                                                     (12分)

              22.①證明:由,    

                即證

                ()                                    (1分)

              當(dāng)  

                    即:                          (3分)

                ()    

              當(dāng)   

                 

                                                                       (6分)

              ②由      

              數(shù)列

                                                            (8分)

              由①可知, 

                                  (10分)

              由錯(cuò)位相減法得:                                       (11分)

                                                  (12分)