日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 14.四棱錐P―ABCD的頂點P在底面ABCD中的投影恰好是A.其三視圖如右圖.則四棱錐P―ABCD的表面積為 . 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)四棱錐P-ABCD的頂點P在底面ABCD中的投影恰好是A,其三視圖如圖:則四棱錐P-ABCD的表面積為
           

          查看答案和解析>>

          四棱錐P-ABCD的頂點P在底面ABCD中的投影恰好是A,其三視圖如圖所示,則四棱錐P-ABCD的表面積為( 。

          查看答案和解析>>

          四棱錐P-ABCD的頂點P在底面ABCD中的投影恰好是A,其三視圖如圖,則四棱錐P-ABCD的表面積為.( 。

          查看答案和解析>>

          四棱錐P-ABCD的頂點P在底面ABCD中的投影恰好是A,其三視圖如圖
          (1)根據(jù)圖中的信息,在四棱錐P-ABCD的側(cè)面、底面和棱中,請把符合要求的結(jié)論填寫在空格處(每空只要求填一種)
          ①一對互相垂直的異面直線
          PA⊥BC,或PA⊥CD
          PA⊥BC,或PA⊥CD

          ②一對互相垂直的平面
          平面PAD⊥平面ABCD,或平面PAD⊥平面ABCD
          平面PAD⊥平面ABCD,或平面PAD⊥平面ABCD
          ;
          ③一對互相垂直的直線和平面
          PA⊥平面ABCD,或AB⊥平面PAD
          PA⊥平面ABCD,或AB⊥平面PAD
          ;
          (2)計算四棱錐P-ABCD的表面積.

          查看答案和解析>>

          四棱錐P-ABCD的頂點P在底面ABCD中的投影恰好是A,其三視圖如圖,則四棱錐P-ABCD的表面積為.( )

          A.(2+)a2
          B.(2-)a2
          C.2+
          D.(2-)π

          查看答案和解析>>

          一、選擇題:

          1―5  ACBBD    6―10  BCDAC

          二、填空題:

          11.60    12.       13.―     14.

          15.2    16.    17.

          三、解答題:

          18.解:(I)

          20090506

             (II)由于區(qū)間的長度是為,為半個周期。

              又分別取到函數(shù)的最小值

          所以函數(shù)上的值域為。……14分

          19.解:(1)該同學(xué)投中于球但未通過考核,即投藍四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

             (2)在這次考核中,每位同學(xué)通過考核的概率為

                ………………10分

              隨機變量X服從其數(shù)學(xué)期望

            …………14分

          20.解:(1)設(shè)FD的中點為G,則TG//BD,而BD//CE,

          <bdo id="c1qsm"></bdo>

          <style id="c1qsm"><pre id="c1qsm"><th id="c1qsm"></th></pre></style>
          <big id="c1qsm"><dl id="c1qsm"></dl></big>

          <option id="c1qsm"><small id="c1qsm"><ins id="c1qsm"></ins></small></option>
            <strike id="c1qsm"></strike>

                  當(dāng)a=5時,AF=5,BD=1,得TG=3。

                  又CE=3,TG=CE。

                  *四邊形TGEC是平行四邊形。      

              *CT//EG,TC//平面DEF,………………4分

                 (2)以T為原點,以射線TB,TC,TG分別為x,y,z軸,

              建立空間直角坐標(biāo)系,則D(1,0,1),

                            ………………6分

              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>
            1. <sub id="o5kww"></sub>

                  則平面DEF的法向量n=(x,y,z)滿足:

                1.  

                      解之可得又平面ABC的法向量

                  m=(0,0,1)

                     

                     即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

                     (3)由P在DE上,可設(shè),……10分

                      則

                                     ………………11分

                      若CP⊥平面DEF,則

                      即

                   

                   

                      解之得:                ……………………13分

                      即當(dāng)a=2時,在DE上存在點P,滿足DP=3PE,使CP⊥平面DEF!14分

                  21.解:(1)因為        所以

                      橢圓方程為:                          ………………4分

                     (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

                     

                      代入       ………………6分

                      設(shè)   ①

                                    ……………………8分

                      設(shè)AB的中點為M,則

                      。

                       ……………………11分

                      ,即存在這樣的直線l;

                      當(dāng)時, k不存在,即不存在這樣的直線l;……………………14分

                   

                   

                   

                   

                  22.解:(I) ……………………2分

                      令(舍去)

                      單調(diào)遞增;

                      當(dāng)單調(diào)遞減。    ……………………4分

                      為函數(shù)在[0,1]上的極大值。        ……………………5分

                     (II)由

                   ①        ………………………7分

                  設(shè),

                  依題意知上恒成立。

                  都在上單調(diào)遞增,要使不等式①成立,

                  當(dāng)且僅當(dāng)…………………………11分

                     (III)由

                  ,則

                  當(dāng)上遞增;

                  當(dāng)上遞減;

                          …………………………16分