日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求函數(shù)的單調(diào)區(qū)間, 查看更多

           

          題目列表(包括答案和解析)

           (I)求函數(shù)的單調(diào)區(qū)間;

            (Ⅱ)函數(shù)在區(qū)間[1,2]上是否有零點,若有,求出零點,若沒有,請說明理由;

            (Ⅲ)若任意的∈(1,2)且,證明:(注:

          查看答案和解析>>

          求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域.

          討論函數(shù)y=f[(x)]的單調(diào)性時要注意兩點:

          (1)若u=(x),y=f(u)在所討論的區(qū)間上都是增函數(shù)或都是減函數(shù),則y=f[(x)]為________;

          (2)若u=(x),y=f(u)在所討論的區(qū)間上一個是增函數(shù),另一個是減函數(shù),則y=f[(x)]為.________

          查看答案和解析>>

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)比較tan 1、tan 2、tan 3的大小.

          查看答案和解析>>

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)比較tan 1、tan 2、tan 3的大。

          查看答案和解析>>

            已知

          (I)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)求函數(shù)上的最小值;

          (Ⅲ)對一切的恒成立,求實數(shù)a的取值范圍

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分。

           

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          B

          D

          B

          C

          A

          A

          C

          D

          B

          D

          C

          C

          1.B.因。

          2..因,

          3.B. 因為的定義域為[0,2],所以對。

          4. 函數(shù)為增函數(shù)

          5. ,,…,

          6.    

          7.  .由題知,垂足的軌跡為以焦距為直徑的圓,則

          ,所以

          8.  

          9. .

          10...函數(shù)

          11..一天顯示的時間總共有種,和為23總共有4種,故所求概率為.

          12..當(dāng)時,顯然成立

          當(dāng)時,顯然不成立;當(dāng)顯然成立;

          當(dāng),則兩根為負,結(jié)論成立

           

          二、填空題:本大題共4小題,每小題4分,共16分。

          13.        14..            15. 5        16. A、B、D

          13.依題意

          14.

          15. 易求得、到球心的距離分別為3、2,類比平面內(nèi)圓的情形可知當(dāng)、與球心共線時,取最大值5。

          16., ∴

          的中點,則, ∴

          設(shè),    則,而,∴

          ,∴

          ∴真命題的代號是

          三、解答題:本大題共6小題,共74分。

          17.解:(1)由

          ,           

          于是=.          

          (2)因為

          所以          

                

          的最大值為.      

           

          18.解:(1)令A(yù)表示兩年后柑桔產(chǎn)量恰好達到災(zāi)前產(chǎn)量這一事件

           

          (2)令B表示兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量這一事件

           

          19.(1)設(shè)的公差為,的公比為,則為正整數(shù),

          ,      

          依題意有

          解得(舍去)      

          (2) 

              

                  

           

          20.解 :(1)證明:依題設(shè),的中位線,所以

          ∥平面,所以。

          的中點,所以,

          。              

          因為,

          所以⊥面,則,

          因此⊥面。

          (2)作,連。

          因為⊥平面,

          根據(jù)三垂線定理知,,              

          就是二面角的平面角。       

          ,則,則的中點,則。

          設(shè),由得,,解得

          中,,則,

          所以,故二面角。

           

          解法二:(1)以直線分別為軸,建立空間直角坐標系,

            

          所以

          所以         

          所以平面           

          ,故:平面

           

          (2)由已知設(shè)

          共線得:存在

          同理:

          設(shè)是平面的一個法向量,

          是平面的一個法量

                        

          所以二面角的大小為                 

          21. 解:(1)因為

                     

          時,根的左右的符號如下表所示

          極小值

          極大值

          極小值

           

          所以的遞增區(qū)間為        

          的遞減區(qū)間為          

          (2)由(1)得到,

                                    

          要使的圖像與直線恰有兩個交點,只要, 

          .                        

           

          22.(1)證明:設(shè)

          則直線的方程:       

          即:

          上,所以①   

          又直線方程:

          得:

          所以     

          同理,

          所以直線的方程:   

          將①代入上式得,即點在直線

          所以三點共線                           

          (2)解:由已知共線,所以 

          為直徑的圓的方程:

          所以(舍去),        

           

          要使圓與拋物線有異于的交點,則

          所以存在,使以為直徑的圓與拋物線有異于的交點