日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知二次函數(shù)y=-
          1
          2
          x2+bx+c
          的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
          (1)求這個二次函數(shù)的解析式;
          (2)求該二次函數(shù)圖象的頂點坐標(biāo)、對稱軸以及二次函數(shù)圖象與x軸的另一個交點;
          (3)在右圖的直角坐標(biāo)系內(nèi)描點畫出該二次函數(shù)的圖象及對稱軸.
          (1)∵的圖象經(jīng)過A(2,0)、B(0,-6)兩點,
          -2+2b+c=0
          c=-6
          ,解得b=4,c=-6,
          ∴這個二次函數(shù)的解析式為y=-
          1
          2
          x2+4x-6
          ,
          (2)y=-
          1
          2
          x2+4x-6
          =-
          1
          2
          (x2-8x+16)+8-6=-
          1
          2
          (x-4)2+2,
          ∴二次函數(shù)圖象的頂點坐標(biāo)為(4,2)、對稱軸為x=4、
          二次函數(shù)圖象與x軸相交時:0=-
          1
          2
          (x-4)2+2,
          解得:x=6或2,
          ∴另一個交點為:(6,0),
          (3)作圖如右.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點),點A、C分別在x軸、y軸上,且C點坐標(biāo)為(0,6),將△BCD沿BD折疊(D點在OC上),使C點落在OA邊的E點上,并將△BAE沿BE折疊,恰好使點A落在BD邊的F點上.
          (1)求BC的長,并求折痕BD所在直線的函數(shù)解析式;
          (2)過點F作FG⊥x軸,垂足為G,F(xiàn)G的中點為H,若拋物線y=ax2+bx+c經(jīng)過B、H、D三點,求拋物線解析式;
          (3)點P是矩形內(nèi)部的點,且點P在(2)中的拋物線上運動(不含B、D點),過點P作PN⊥BC,分別交BC和BD于點N、M,是否存在這樣的點P,使S△BNM=S△BPM?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
          (1)求點A、E的坐標(biāo);
          (2)若y=-
          6
          3
          7
          x2+bx+c過點A、E,求拋物線的解析式;
          (3)連接PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,Rt△ABC中,斜邊AB在x軸上,點C在y軸上,且OC=2,OA:OB=1:4,拋物線y=ax2+bx+c經(jīng)過A、B、C三點.
          (1)求此拋物線的解析式;
          (2)若直線y=x+b與Rt△ABC相交,所截得的三角形面積是原Rt△ABC面積的
          3
          10
          ,求b的值;
          (3)將△OAC繞原點O逆時針旋轉(zhuǎn)90°后得到△OEF,如圖2,再將△OEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNQ(點M、N、Q分別與點E、F、O對應(yīng)),使點M,N在拋物線上,求點M,N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于A(1,0)、B(4,0)兩點,與y軸交于C(0,2),連接AC、BC.
          (1)求拋物線解析式;
          (2)BC的垂直平分線交拋物線于D、E兩點,求直線DE的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=
          1
          2
          x2-mx+2m-
          7
          2

          (1)試說明:無論m為何實數(shù),該拋物線與x軸總有兩個不同的交點.
          (2)如圖,當(dāng)拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x-1與拋物線交于A、B兩點,并與它的對稱軸交于點D.
          ①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標(biāo);若不存在,說明理由;
          ②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得以C、D、M、N為頂點的四邊形是平行四邊形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某校八年級(1)班共有學(xué)生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是a元.經(jīng)測算和市場調(diào)查,若該班學(xué)生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成,一部分是購買純凈水的費用,另一部分是其它費用780元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖所示關(guān)系.
          (1)求y與x的函數(shù)關(guān)系式;
          (2)若該班每年需要純凈水380桶,且a為120時,請你根據(jù)提供的信息分析一下:該班學(xué)生集體改飲桶裝純凈水與個人買飲料,哪一種花錢更少?
          (3)當(dāng)a至少為多少時,該班學(xué)生集體改飲桶裝純凈水一定合算從計算結(jié)果看,你有何感想?(不超過30字)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側(cè)的點,連接BD交線段PC于E,且PD=PE.
          (1)求證:PD是⊙O的切線;
          (2)若⊙O的半徑為4
          3
          ,PC=8
          3
          ,設(shè)OC=x,PD2=y.
          ①求y關(guān)于x的函數(shù)關(guān)系式;
          ②當(dāng)x=
          3
          時,求tanB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          山西特產(chǎn)專賣店銷售核桃,其進(jìn)價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克.若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
          (1)若該專賣店銷售這種核桃要想平均每天獲利2240元,每千克核桃應(yīng)降價多少元?
          (2)在(1)問的條件下,平均每天獲利不變,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?
          (3)寫出每天總利潤y與降價x元的函數(shù)關(guān)系式,為了使每天的利潤最大,應(yīng)降價多少元?

          查看答案和解析>>