日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          某校八年級(1)班共有學生50人,據統(tǒng)計原來每人每年用于購買飲料的平均支出是a元.經測算和市場調查,若該班學生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成,一部分是購買純凈水的費用,另一部分是其它費用780元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖所示關系.
          (1)求y與x的函數關系式;
          (2)若該班每年需要純凈水380桶,且a為120時,請你根據提供的信息分析一下:該班學生集體改飲桶裝純凈水與個人買飲料,哪一種花錢更少?
          (3)當a至少為多少時,該班學生集體改飲桶裝純凈水一定合算從計算結果看,你有何感想?(不超過30字)
          (1)設y=kx+b,
          ∵x=4時,y=400;x=5時,y=320.
          400=4k+b
          320=5k+b

          解之,得
          k=-80
          b=720

          ∴y與x的函數關系式為y=-80x+720.(3分)

          (2)該班學生買飲料每年總費用為50×120=6000(元),
          當y=380時,380=-80x+720,得x=4.25.
          該班學生集體飲用桶裝純凈水的每年總費用為380×4.25+780=2395(元).
          顯然,從經濟上看飲用桶裝純凈水花錢少.(5分)

          (3)設該班每年購買純凈水的費用為W元,則
          W=xy=x(-80x+720)=-80(x-
          9
          2
          2+1620,
          ∴當x=
          9
          2
          時,W最大值=1620,(7分)
          要使飲用桶裝純凈水對學生一定合算,
          則50a≥W最大值+780,
          即50a≥1620+780,
          解之,得a≥48元.
          所以a至少為48元時班級飲用桶裝純凈水對學生一定合算,(8分)
          由此看出,飲用桶裝純凈水不僅能省錢,而且能養(yǎng)成勤儉節(jié)約的好習慣.(9分)
          練習冊系列答案
          相關習題

          科目:初中數學 來源:不詳 題型:解答題

          如圖,在直角坐標系中,已知點A(
          3
          ,0),B(-
          3
          ,0),以點A為圓心,AB為半徑的圓與x軸相交于點B,C,與y軸相交于點D,E.
          (1)若拋物線y=
          1
          3
          x2+bx+c經過C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上;
          (2)在(1)中的拋物線的對稱軸上求一點P,使得△PBD的周長最。
          (3)設Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          已知二次函數99象過點A(5,-1),B(1,1),C(-1,2),求此二次函數9解析式.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖,對稱軸為直線x=-
          7
          2
          的拋物線經過點A(-6,0)和點B(0,4).
          (1)求拋物線的解析式和頂點坐標;
          (2)設點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以OA為對角線的平行四邊形,求?OEAF的面積S與x的函數關系式,并寫出自變量x的取值范圍;
          ①當?OEAF的面積為24時,請判斷?OEAF是否為菱形?
          ②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.•

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點,
          (1)求出m的值;
          (2)求拋物線與x軸的交點坐標;
          (3)直接寫出x取何值時,拋物線位于x軸上方.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖,已知二次函數y=-
          1
          2
          x2+bx+c
          的圖象經過A(2,0)、B(0,-6)兩點.
          (1)求這個二次函數的解析式;
          (2)求該二次函數圖象的頂點坐標、對稱軸以及二次函數圖象與x軸的另一個交點;
          (3)在右圖的直角坐標系內描點畫出該二次函數的圖象及對稱軸.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中,拋物線y=-
          1
          2
          x2+bx+c
          經過A(-2,0),C(4,0)兩點,和y軸相交于點B,連接AB、BC.
          (1)求拋物線的解析式(關系式).
          (2)在第一象限外,是否存在點E,使得以BC為直角邊的△BCE和Rt△AOB相似?若存在,請簡要說明如何找到符合條件的點E,然后直接寫出點E的坐標,并判斷是否有滿足條件的點E在拋物線上;若不存在,請說明理由.
          (3)在直線BC上方的拋物線上,找一點D,使S△BCD:S△ABC=1:4,并求出此時點D的坐標.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖已知拋物線y=mx2+nx+p與y=x2+6x+5關于y軸對稱,并與y軸交于點M,與x軸交于點A和B.
          (1)求出y=mx2+nx+p的解析式,試猜想出一般形式y(tǒng)=ax2+bx+c關于y軸對稱的二次函數解析式(不要求證明);
          (2)若AB中點是C,求sin∠CMB;
          (3)如果一次函數y=kx+b過點M,且于y=mx2+nx+p相交于另一點N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中,已知OB=2,點A和點B關于N(0,-2)成中心對稱,拋物線y=ax2+bx+c經過點A、O、B三點.
          (1)求拋物線的函數表達式;
          (2)若點P是x軸上的一動點,從點O出發(fā)沿射線OB方向運動,圓P半徑為
          3
          2
          4
          ,速度為每秒1個單位,試求幾秒后圓P與直線AB相切;
          (3)在此拋物線上,是否存在點P,使得以點P與點O、A、B為頂點的四邊形是梯形?若存在,求點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案