日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,對稱軸為直線x=-
          7
          2
          的拋物線經(jīng)過點A(-6,0)和點B(0,4).
          (1)求拋物線的解析式和頂點坐標;
          (2)設點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以OA為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關系式,并寫出自變量x的取值范圍;
          ①當?OEAF的面積為24時,請判斷?OEAF是否為菱形?
          ②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.•
          (1)設拋物線的解析式為y=a(x+
          7
          2
          2+k(k≠0),
          則依題意得:
          24
          25
          a+k=0,
          49
          4
          a+k=4
          解之得:a=
          2
          3
          ,
          k=-
          25
          6

          即:y=
          2
          3
          (x+
          7
          2
          2-
          25
          6
          ,頂點坐標為(-
          7
          2
          ,-
          25
          6
          );

          (2)∵點E(x,y)在拋物線上,且位于第三象限.
          ∴S=2S△OAE=2×
          1
          2
          ×0A×(-y)
          =-6y
          =-4(x+
          7
          2
          2+25 (-6<x<-1);
          ①當S=24時,即-4(x+
          7
          2
          2+25=24,
          解之得:x1=-3,x2=-4
          ∴點E為(-3,-4)或(-4,-4)
          當點E為(-3,-4)時,滿足OE=AE,故□OEAF是菱形;
          當點E為(-4,-4)時,不滿足OE=AE,故□OEAF不是菱形.
          ②不存在.
          當0E⊥AE且OE=AE時,□OEAF是正方形,此時點E的坐標為(-3,-3),
          而點E不在拋物線上,故不存在點E,使□OEAF為正方形.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
          (1)求點A、E的坐標;
          (2)若y=-
          6
          3
          7
          x2+bx+c過點A、E,求拋物線的解析式;
          (3)連接PB、PD,設L為△PBD的周長,當L取最小值時,求點P的坐標及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖1,Rt△ABC中,斜邊AB在x軸上,點C在y軸上,且OC=2,OA:OB=1:4,拋物線y=ax2+bx+c經(jīng)過A、B、C三點.
          (1)求此拋物線的解析式;
          (2)若直線y=x+b與Rt△ABC相交,所截得的三角形面積是原Rt△ABC面積的
          3
          10
          ,求b的值;
          (3)將△OAC繞原點O逆時針旋轉(zhuǎn)90°后得到△OEF,如圖2,再將△OEF繞平面內(nèi)某點旋轉(zhuǎn)180°后得△MNQ(點M、N、Q分別與點E、F、O對應),使點M,N在拋物線上,求點M,N的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中,半徑分別為3
          3
          3
          的⊙O1和⊙O2外切于原點O,在x軸上方的兩圓的外公切線AB與⊙O1和⊙O2分別切于點A、B,直線AB交y軸于點C.O2D⊥O1A于點D.
          (1)求∠O1O2D的度數(shù);
          (2)求點C的坐標;
          (3)求經(jīng)過O1、C、O2三點的拋物線的解析式;
          (4)在拋物線上是否存在點P,使△PO1O2為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知拋物線y=2x2+bx-2經(jīng)過點A(1,0).
          (1)求b的值;
          (2)設P為此拋物線的頂點,B(a,0)(a≠1)為拋物線上的一點,Q是坐標平面內(nèi)的點,若以A、B、P、Q為頂點的四邊形為平行四邊形,這樣的Q點有幾個,并求出PQ的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中,直線y=kx+2與x軸交于點A,與y軸交于點B,與拋物線y=ax2+bx交于點C、D.已知點C的坐標為(2,1),點D的橫坐標為
          1
          2

          (1)求點D的坐標;
          (2)求拋物線的函數(shù)表達式;
          (3)拋物線在x軸上方部分是否存在一點P,使△POA的面積比△POB的面積大4?如果存在,求出點P的坐標;如果不存在,說明理由.
          (4)將題中的拋物線y=ax2+bx沿x軸平移,當拋物線經(jīng)過點B時,請直接寫出平移的方向和距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,已知拋物線y=
          3
          4
          x2+bx+c與坐標軸交于A、B、C三點,A點的坐標為(-1,0),過點C的直線y=
          3
          4t
          x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
          (1)填空:點C的坐標是______,b=______,c=______;
          (2)求線段QH的長(用含t的式子表示);
          (3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          某校八年級(1)班共有學生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是a元.經(jīng)測算和市場調(diào)查,若該班學生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成,一部分是購買純凈水的費用,另一部分是其它費用780元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖所示關系.
          (1)求y與x的函數(shù)關系式;
          (2)若該班每年需要純凈水380桶,且a為120時,請你根據(jù)提供的信息分析一下:該班學生集體改飲桶裝純凈水與個人買飲料,哪一種花錢更少?
          (3)當a至少為多少時,該班學生集體改飲桶裝純凈水一定合算從計算結果看,你有何感想?(不超過30字)

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側的點,連接BD交線段PC于E,且PD=PE.
          (1)求證:PD是⊙O的切線;
          (2)若⊙O的半徑為4
          3
          ,PC=8
          3
          ,設OC=x,PD2=y.
          ①求y關于x的函數(shù)關系式;
          ②當x=
          3
          時,求tanB的值.

          查看答案和解析>>

          同步練習冊答案