日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①,RtABC中,∠ACB90°,點D為邊AC上一點,DEAB于點E,點HBD中點,CH的延長線交AB于點F

          1)求證:CHEH;

          2)若∠CAB40°,求∠EHF;

          3)如圖②,若△DAE≌△CEH,點QCH的中點,連接AQ,求證:AQEH

          【答案】1)見解析;(2)∠EHF80°;(3)見解析

          【解析】

          1)根據(jù)直角三角形斜邊中線的性質證明即可.

          2)先根據(jù)等腰三角形的性質得:∠HCB=∠HBC,∠HEB=∠HBE,由三角形外角的性質得:∠DHC2HBC,∠DHE2HBE,從而有∠CHE2CBA,計算∠CBA50°,根據(jù)平角的定義可得結論;

          3)如圖②,連接AH,先證明AEEDEHDHCH,得△DEH是等邊三角形,所以∠DHC30°,∠AEH150°,再證明ACAH,根據(jù)等腰三角形三線合一可得AQCH,最后根據(jù)同位角相等,兩直線平行可得結論.

          1)證明:如圖①,∵DEAB,

          ∴∠DEB90°,

          RtDEBRtDCB中,∠DEB=∠DCB90°,HBD的中點,

          EHBDCHBD,

          EHCH;

          2)解:∵HBD的中點,

          BHBD,

          BHEHCH,

          ∴∠HCB=∠HBC,∠HEB=∠HBE,

          在△CHB和△EHB中,

          DHC=∠HCB+HBC,∠DHE=∠HEB+HBE,

          ∴∠DHC2HBC,∠DHE2HBE,

          ∴∠CHE2CBA

          RtACB中,∠ACB90°,

          ∴∠A+CBA90°,

          ∵∠A40°,

          ∴∠CBA50°,

          ∴∠CHE100°

          ∴∠EHF80°;

          3)證明:如圖②,連接AH,

          ∵△DAE≌△CEH,

          AEEH,∠AED=∠EHC90°,

          HCHE,DHBD,

          AEEDEHDHCH,

          ∴△DEH是等邊三角形,

          ∴∠DEH=∠DHE60°

          ∴∠DHC=∠EHC﹣∠EHD30°,∠AEH=∠AED+DEH150°,

          AEEH,DHCH

          ∴∠EHA=(180°﹣∠AEH÷215°,

          HCD=(180°﹣∠DHC÷275°,

          ∴∠AHC=∠EHC﹣∠EHA75°,

          ∴∠AHC=∠ACH75°

          ACAH,

          QCH的中點,

          AQCH

          ∴∠AQC90°,

          ∴∠AQC=∠EHC

          AQEH

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】蘭州市外國語學校開展數(shù)學史知識競賽活動,八年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示:

          1)請計算八(1)班、八(2)班選出的5名選手復賽的平均成績?眾數(shù)和中位數(shù)?

          2)請用方差判斷哪個班選出的5名選手的復賽成績比較穩(wěn)定?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖是拋物線圖象的一部分,拋物線的頂點坐標,與軸的一個交點,直線與拋物線交于,兩點,下列結論:

          ;②;③方程有兩個相等的實數(shù)根;④拋物線與軸的另一個交點是;⑤當時,有,

          其中正確的是________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在正方形網(wǎng)格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是(  )

          A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1

          C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為10,點E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點H,AH=10,連接BD,分別交AE、AH、AF于點P、G、Q.

          (1)求CEF的周長;

          (2)若EBC的中點,求證:CF=2DF;

          (3)連接QE,求證:AQ=EQ.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】由邊長相等的小正方形組成的網(wǎng)格,以下各圖中點A、B、C、D都在格點上.

          (1)在圖1中,PC:PB=   ;

          (2)利用網(wǎng)格和無刻度的直尺作圖,保留痕跡,不寫作法.

          ①如圖2,在AB上找點P,使得AP:PB=1:3;

          ②如圖3,在BC上找點P,使得APB∽△DPC;

          ③如圖4,在ABC中內(nèi)找一點P,連接PA、PB、PC,將ABC分成面積相等的三部分.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形A'B'C'D'在矩形ABCD的內(nèi)部,ABA'B',ADA'D',且AD=12,AB=6,設ABA'B'、BCB'C'、CDC'D'、DAD'A'之間的距離分別為a,b,c,d,

          (1)a=b=c=d=2,矩形A'B'C'D'∽矩形ABCD嗎,為什么?

          (2)若矩形A'B'C'D'∽矩形ABCD,a,b,c,d應滿足什么等量關系?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC,AC=BC,C=90,AD是△ABC的角平分線,DEAB,垂足為E.求證:AB=AC+CD.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB = 90°,AC = BC,DBC邊的中點,BEABAD的延長線于點ECF平分∠ACBAD于點F,連接CE.求證:(1)DEF的中點;(2)CEF是等腰三角形.

          查看答案和解析>>

          同步練習冊答案