日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:△ABC中,BC=3,AC=4,AB=5.若將△ABC沿最長邊AB翻折,使得到的△ABC′與△ABC在同一個平面內(nèi),則CC′等于


          1. A.
            數(shù)學公式
          2. B.
            數(shù)學公式
          3. C.
            數(shù)學公式
          4. D.
            數(shù)學公式
          D
          分析:根據(jù)勾股定理的逆定理,知△ABC是直角三角形;根據(jù)軸對稱的性質(zhì),得AB垂直平分CC′;根據(jù)直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊即可求解.
          解答:解:∵BC=3,AC=4,AB=5,
          ∴BC2+AC2=AB2,
          ∴△ABC是直角三角形.
          根據(jù)折疊的性質(zhì),得AB垂直平分CC′.
          ∴CD==
          ∴CC′=2CD=
          故選D.
          點評:此題綜合運用了勾股定理的逆定理、直角三角形的斜邊上的高的求法以及軸對稱的性質(zhì).
          直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
          3
          4
          ,現(xiàn)將△ABC繞著點C逆時針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設直線DE與直線AB相交于點P,連接CP.
          精英家教網(wǎng)
          (1)當CD⊥AB時(如圖1),求證:PC平分∠EPA;
          (2)當點P在邊AB上時(如圖2),求證:PE+PB=6;
          (3)在△ABC旋轉(zhuǎn)過程中,連接BE,當△BCE的面積為
          25
          4
          3
          時,求∠BPE的度數(shù)及PB的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個數(shù)有(  )個.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知在△ABC中,有一個角為60°,S△ABC=10
          3
          ,周長為20,則三邊長分別為
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知在△ABC中,點D、E分別是AB、AC上的點,以AE為直徑的⊙O與過B點的⊙P精英家教網(wǎng)外切于點D,若AC和BC邊的長是關于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
          (1)求△ABC三邊的長;
          (2)求證:BC是⊙P的切線;
          (3)若⊙O的半徑為3,求⊙P的半徑.

          查看答案和解析>>

          同步練習冊答案