【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是半圓的中點(diǎn),連接CD交OB于點(diǎn)E,點(diǎn)F是AB延長線上一點(diǎn),CF=EF.
(1)求證:FC是⊙O的切線;
(2)若CF=5,,求⊙O半徑的長.
【答案】(1)證明見解析;(2)AO=.
【解析】
(1)連接OD,利用點(diǎn)D是半圓的中點(diǎn)得出∠AOD與∠BOD是直角,之后通過等量代換進(jìn)一步得出∠FCE+∠OCD=∠OED+∠ODC=90°從而證明結(jié)論即可;
(2)通過得出
=
,再證明△ACF∽△CBF從而得出AF=10,之后進(jìn)一步求解即可.
證明:連接OD,
∵點(diǎn)D是半圓的中點(diǎn),
∴∠AOD=∠BOD=90°.
∴∠ODC+∠OED=90°.
∵OD=OC,
∴∠ODC=∠OCD.
又∵CF=EF,
∴∠FCE=∠FEC.
∵∠FEC=∠OED,
∴∠FCE=∠OED.
∴∠FCE+∠OCD=∠OED+∠ODC=90°.
即FC⊥OC.
∴FC是⊙O的切線.
(2)∵tanA=,
∴在Rt△ABC中,=
.
∵∠ACB=∠OCF=90°,
∴∠ACO=∠BCF=∠A.
∴△ACF∽△CBF,
∴=
=
=
.
∴AF=10.
∴CF2=BF·AF.
∴BF=.
∴AO==
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是
的直徑,
交
于點(diǎn)
,
是
的中點(diǎn),
與
交于點(diǎn)
,
.
(1)求證:是
的切線;
(2)已知,
,
①求的長;
②求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是直線
與反比例函數(shù)
(
為常數(shù))的圖象的交點(diǎn).過點(diǎn)
作
軸的垂線,垂足為
,且
.
(1)求點(diǎn)的坐標(biāo)及
的值;
(2)已知點(diǎn),過點(diǎn)
作平行于
軸的直線,交直線
于點(diǎn)
,交反比例函數(shù)
(
為常數(shù))的圖象于點(diǎn)
,交垂線
于點(diǎn)
.若
,結(jié)合函數(shù)的圖象,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列對于隨機(jī)事件的概率的描述:
①拋擲一枚均勻的硬幣,因?yàn)?/span>“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;
②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機(jī)摸出一個球,恰好是白球的概率是0.2;
③測試某射擊運(yùn)動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計(jì)該運(yùn)動員“射中9環(huán)以上”的概率是0.85
其中合理的有______(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小宇設(shè)計(jì)了一個隨機(jī)碰撞模擬器:在模擬器中有,
,
三種型號的小球,它們隨機(jī)運(yùn)動,當(dāng)兩個小球相遇時會發(fā)生碰撞(不考慮多個小球相撞的情況).若相同型號的兩個小球發(fā)生碰撞,會變成一個
型小球;若不同型號的兩個小球發(fā)生碰撞,則會變成另外一種型號的小球,例如,一個
型小球和一個
型小球發(fā)生碰撞,會變成一個
型小球.現(xiàn)在模擬器中有
型小球12個,
型小球9個,
型小球10個,如果經(jīng)過各種兩兩碰撞后,最后只剩一個小球.以下說法:
①最后剩下的小球可能是型小球;
②最后剩下的小球一定是型小球;
③最后剩下的小球一定不是型小球.
其中正確的說法是:( )
A.①B.②③C.③D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=-x2+2bx+c與直線l:y=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2.
(1)請用含有b的代數(shù)式表示c: ;
(2)若點(diǎn)B在直線l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b,5).
①若拋物線M還過點(diǎn)B,直接寫出該拋物線的解析式;
②若拋物線M與線段BC恰有一個交點(diǎn),結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,以點(diǎn)
為圓心,
長為半徑在矩形內(nèi)畫弧,交
邊于點(diǎn)
,連接
交
于點(diǎn)
,則圖中陰影部分面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=12,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com