日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線l經(jīng)過(guò)⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于另一點(diǎn)Q,如果QP=QO,則∠OCP=______.
          ①根據(jù)題意,畫(huà)出圖(1),
          在△QOC中,OC=OQ,
          ∴∠OQC=∠OCP,
          在△OPQ中,QP=QO,
          ∴∠QOP=∠QPO,
          又∵∠AOC=30°,
          ∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
          在△OPQ中,∠QOP+∠QPO+∠OQC=180°,
          即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
          整理得,3∠OCP=120°,
          ∴∠OCP=40°.

          ②當(dāng)P在線段OA的延長(zhǎng)線上(如圖2)
          ∵OC=OQ,
          ∴∠OQP=(180°-∠QOC)×
          1
          2
          ①,
          ∵OQ=PQ,
          ∴∠OPQ=(180°-∠OQP)×
          1
          2
          ②,
          在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
          把①②代入③得:
          60°+∠QOC=∠OQP,
          ∵∠OQP=∠QCO,
          ∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°,
          ∴∠QOC=20°,則∠OQP=80°
          ∴∠OCP=100°;

          ③當(dāng)P在線段OA的反向延長(zhǎng)線上(如圖3),
          ∵OC=OQ,
          ∴∠OCP=∠OQC=(180°-∠COQ)×
          1
          2
          ①,
          ∵OQ=PQ,
          ∴∠P=(180°-∠OQP)×
          1
          2
          ②,
          ∵∠AOC=30°,
          ∴∠COQ+∠POQ=150°③,
          ∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
          ①②③④聯(lián)立得
          ∠P=10°,
          ∴∠OCP=180°-150°-10°=20°.
          故答案為:40°、20°、100°.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          一個(gè)有一個(gè)內(nèi)角是30°的直角三角形的斜邊上的中線長(zhǎng)是5,則較長(zhǎng)的直角邊長(zhǎng)為_(kāi)_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖1,是邊長(zhǎng)分別為4和3的兩個(gè)等邊三角形紙片ABC和CD′E′疊放在一起.
          (1)操作:固定△ABC,將△CD′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試說(shuō)明理由;
          (2)操作:固定△ABC,若將△CD′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線交AB于點(diǎn)F,在線段CF上沿著CF方向以每秒1個(gè)單位長(zhǎng)的速度平移,平移后的△CDE設(shè)為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個(gè)三角形是等腰三角形?寫(xiě)出你的結(jié)論并說(shuō)明理由;
          (3)探究:如圖4,在(2)的條件下,將△PQR的頂點(diǎn)P移動(dòng)至F點(diǎn),求此時(shí)QH的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如果等腰三角形的周長(zhǎng)是25cm,一腰上的中線把三角形分成兩個(gè)三角形的周長(zhǎng)差是4cm.則這個(gè)等腰三角形的腰長(zhǎng)為_(kāi)_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,∠1=50°,∠2=80°,DB=AB,CE=CA,則∠D=______,∠DAE=______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某學(xué)校初中三年級(jí)學(xué)生在參加綜合實(shí)踐活動(dòng)中,看到工人師傅在材料的邊角處畫(huà)直角時(shí),有時(shí)用“三弧法”,如圖所示,方法是:
          (1)畫(huà)線段AB,分別以A、B為圓心,AB為半徑畫(huà)弧,兩弧交于C點(diǎn);
          (2)在AC延長(zhǎng)線上截取CD=CB;
          (3)連接DB,則得到直角∠ABC.
          你知道這是為什么嗎?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          (x-2)2+
          y-4
          =0
          ,則以x,y的值為兩邊長(zhǎng)的等腰三角形的周長(zhǎng)是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          在△ABC中,AB=AC,D為BC的中點(diǎn),則可得出結(jié)論:______(至少兩個(gè))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知ADBC,AD平分∠CAE,試說(shuō)明△ABC是等腰三角形.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案