日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對(duì)解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖1所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益y的關(guān)系如圖2所示(其中OA是拋物線(xiàn)的一部分,A為拋物線(xiàn)的頂點(diǎn)),且用于回顧反思的時(shí)間不超過(guò)用于解題的時(shí)間.
          (1)求小迪解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式;
          (2)求小迪回顧反思的學(xué)習(xí)收益量y與用于回顧反思的時(shí)間x的函數(shù)關(guān)系式;
          (3)問(wèn)小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最
          大?
          (1)由圖1,設(shè)y=kx(k≠0).當(dāng)x=1時(shí),y=2,
          解得k=2
          ∴y=2x(0≤x≤20)

          (2)中的收益量y與反思時(shí)間x的函數(shù)關(guān)系必須分段:
          由圖2,當(dāng)0≤x<4時(shí),設(shè)y=a(x-4)2+16(a≠0),
          由已知,當(dāng)x=0時(shí),y=0
          ∴0=16a+16,
          ∴a=-1
          ∴y=-(x-4)2+16即y=-x2+8x
          當(dāng)4≤x≤10時(shí),y=16.
          因此,當(dāng)0≤x<4時(shí),y=-(x-4)2+16;
          當(dāng)4≤x≤10時(shí),y=16.

          (3)設(shè)小迪用于回顧反思的時(shí)間為x(0≤x≤10)分鐘,學(xué)習(xí)收益總量為y,
          則她用于解題的時(shí)間為(20-x)分鐘.
          當(dāng)0≤x<4時(shí),y=-x2+8x+2(20-x)=-(x-3)2+49
          ∵a=-1<0
          ∴函數(shù)有最大值,
          當(dāng)x=3時(shí),有最大值49;
          當(dāng)4≤x≤10時(shí),y=16+2(20-x)=56-2x,y隨x的增大而減小,
          因此當(dāng)x=4時(shí),有最大值48.
          綜合以上,當(dāng)x=3時(shí),有最大值49,此時(shí)20-x=17.
          即小迪用于回顧反思的時(shí)間為3分鐘,用于解題的時(shí)間為17分鐘時(shí),學(xué)習(xí)的總收益量最大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,拋物線(xiàn)y=ax2-
          1
          3
          x+2
          與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).
          (1)求a的值和拋物線(xiàn)的頂點(diǎn)坐標(biāo);
          (2)分別連接AC、BC.在x軸下方的拋物線(xiàn)上求一點(diǎn)M,使△AMC與△ABC的面積相等;
          (3)設(shè)N是拋物線(xiàn)對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),d=|AN-CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請(qǐng)簡(jiǎn)單說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過(guò)A,B,C三點(diǎn)作拋物線(xiàn).
          (1)求拋物線(xiàn)的解析式;
          (2)點(diǎn)E是AC延長(zhǎng)線(xiàn)上一點(diǎn),∠BCE的平分線(xiàn)CD交⊙O′于點(diǎn)D,連接BD,求直線(xiàn)BD的解析式;
          (3)在(2)的條件下,拋物線(xiàn)上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
          第三問(wèn)改成,在(2)的條件下,點(diǎn)P是直線(xiàn)BC下方的拋物線(xiàn)上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PCD的面積是△BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,二次函數(shù)y=-
          1
          2
          x2+mx+n的圖象與y軸交于點(diǎn)N,其頂點(diǎn)M在直線(xiàn)y=-
          3
          2
          x上運(yùn)動(dòng),O為坐標(biāo)原點(diǎn).

          (1)當(dāng)m=-2時(shí),求點(diǎn)N的坐標(biāo);
          (2)當(dāng)△MON為直角三角形時(shí),求m、n的值;
          (3)已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-4,2),B(-4,-3),C(-2,2),當(dāng)拋物線(xiàn)y=-
          1
          2
          x2+mx+n在對(duì)稱(chēng)軸左側(cè)的部分與△ABC的三邊有公共點(diǎn)時(shí),求m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知:拋物線(xiàn)y=(k-1)x2+2kx+k-2與x軸有兩個(gè)不同的交點(diǎn).
          (1)求k的取值范圍;
          (2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),求拋物線(xiàn)的解析式;
          (3)在(2)的條件下,若在拋物線(xiàn)和x軸所圍成的封閉圖形內(nèi)畫(huà)出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對(duì)邊的兩個(gè)端點(diǎn)在拋物線(xiàn)上,試求出這個(gè)最大正方形的邊長(zhǎng)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,某地一古城墻門(mén)洞呈拋物線(xiàn)形,已知門(mén)洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個(gè)門(mén)洞的高度.(提示:選擇適當(dāng)?shù)奈恢脼樵c(diǎn)建立直角坐標(biāo)系,例如圖:以AB的中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          春節(jié)期間某水庫(kù)養(yǎng)殖場(chǎng)為適應(yīng)市場(chǎng)需求,連續(xù)用20天時(shí)間,采用每天降低水位以減少捕撈成本的辦法,對(duì)水庫(kù)中某種鮮魚(yú)進(jìn)行捕撈、銷(xiāo)售.九(1)班數(shù)學(xué)建模興趣小組根據(jù)調(diào)查,整理出第x天(1≤x≤20且x為整數(shù))的捕撈與銷(xiāo)售的相關(guān)信息如表:
          鮮魚(yú)銷(xiāo)售單價(jià)(元/kg)20
          單位捕撈成本(元/kg)5-
          x
          5
          捕撈量(kg)950-10x
          (1)在此期間該養(yǎng)殖場(chǎng)每天的捕撈量與前一天末的捕撈量相比是如何變化的?
          (2)假定該養(yǎng)殖場(chǎng)每天捕撈和銷(xiāo)售的鮮魚(yú)沒(méi)有損失,且能在當(dāng)天全部售出,求第x天的收入y(元)與x(天)之間的函數(shù)關(guān)系式?(當(dāng)天收入=日銷(xiāo)售額-日捕撈成本)
          (3)試說(shuō)明(2)中的函數(shù)y隨x的變化情況,并指出在第幾天y取得最大值,最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某地計(jì)劃開(kāi)鑿一條單向行駛(從正中通過(guò))的隧道,其截面是拋物線(xiàn)拱形ACB,而且能通過(guò)最寬3米,最高3.5米的廂式貨車(chē).按規(guī)定,機(jī)動(dòng)車(chē)通過(guò)隧道時(shí)車(chē)身距隧道壁的水平距離和鉛直距離最小都是0.5米.為設(shè)計(jì)這條能使上述廂式貨車(chē)恰好安全通過(guò)的隧道,在圖紙上以直線(xiàn)AB為x軸,線(xiàn)段AB的垂直平分線(xiàn)為y軸,建立如圖所示的直角坐標(biāo)系,求拋物線(xiàn)拱形的表達(dá)式、隧道的跨度AB和拱高OC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,根據(jù)圖形寫(xiě)出一個(gè)符合圖象的二次函數(shù)表達(dá)式:______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案