日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知海島A的周?chē)?/span>6km的范圍內(nèi)有暗礁,一艘海輪在B處測(cè)得海島A在北偏東30°的方向;向正北方向航行6km到達(dá)C處,又測(cè)得該島在北偏東60°的方向,如果海輪不改變航向,繼續(xù)向正北航行,有沒(méi)有觸礁的危險(xiǎn)?

          【答案】海輪不改變航向,繼續(xù)向正北航行,有觸礁的危險(xiǎn).

          【解析】

          過(guò)點(diǎn)AAD⊥BD于點(diǎn)D,在Rt△ACD中,通過(guò)∠ACD60°AD表示出CD,在Rt△ABD中,通過(guò)∠ABC30°AD表示出BD,算出AD6比較即可.

          解:過(guò)點(diǎn)AAD⊥BD于點(diǎn)D,在Rt△ACD中,

          ∵∠ACD60°,

          ∴∠DAC=30°,則AC=2CD,,即CD,

          同理,在Rt△ABD中,

          則∠ABC=30°,則AB=2AD,,

          BD,

          BCBDCD6,解得AD36

          ∴如果海輪不改變航向,繼續(xù)向正北航行,有觸礁的危險(xiǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面角坐標(biāo)系中,拋物線C1:y=ax2+bx﹣1經(jīng)過(guò)點(diǎn)A(﹣2,1)和點(diǎn)B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M.

          (1)求拋物線C1的表達(dá)式;

          (2)直接用含t的代數(shù)式表示線段MN的長(zhǎng);

          (3)當(dāng)AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;

          (4)在(3)的條件下,設(shè)拋物線C1y軸交于點(diǎn)P,點(diǎn)My軸右側(cè)的拋物線C2上,連接AMy軸于點(diǎn)k,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQQN,當(dāng)KQ=1且∠KNQ=BNP時(shí),請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD中,已知AB=3,點(diǎn)E,F(xiàn)分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則AEF的面積為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見(jiàn)解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB,

          ∴∠COE=CAD,EOD=ODA

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在五一期間,小明、小亮等同學(xué)隨家長(zhǎng)一同到某公園游玩,下面是購(gòu)買(mǎi)門(mén)票時(shí),小明與他爸爸的對(duì)話(如圖),試根據(jù)圖中的信息,解答下列問(wèn)題:

          (1)小明他們一共去了幾個(gè)成人,幾個(gè)學(xué)生?

          (2)請(qǐng)你幫助小明算一算,用哪種方式購(gòu)票更省錢(qián)?并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均在格點(diǎn)上,在△ABC的內(nèi)部有一點(diǎn)P,滿足SPAB:SPBC:SPCA=1:2:3,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度直尺畫(huà)出點(diǎn)P(保留畫(huà)圖痕跡)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某經(jīng)銷(xiāo)商銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示:

          (1)求y(千克)與銷(xiāo)售價(jià)z的函數(shù)關(guān)系式;

          (2)該經(jīng)銷(xiāo)商想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】公元3世紀(jì),古希臘數(shù)學(xué)家丟番圖(Diophantus)在其《算術(shù)》一書(shū)中設(shè)置了以下問(wèn)題:已知兩正整數(shù)之和為20,乘積為96,求這兩個(gè)數(shù).因?yàn)閮蓴?shù)之和為20,所以這兩個(gè)數(shù)不可能同時(shí)大于10,也不可能同時(shí)小于10,必定是一個(gè)大于10,一個(gè)小于10.根據(jù)如圖所示的設(shè)法,可設(shè)一個(gè)數(shù)為,則另一個(gè)數(shù)為,根據(jù)兩數(shù)之積為96,可得.請(qǐng)根據(jù)以上思路解決下列問(wèn)題:

          1)若兩個(gè)正整數(shù)之和為100,大數(shù)比小數(shù)大,根據(jù)丟番圖的設(shè)法,這兩個(gè)正整數(shù)可表示為_______

          2)請(qǐng)你根據(jù)丟番圖的運(yùn)算方法,計(jì)算的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知P(33),點(diǎn)BA分別在x軸正半軸和y軸正半軸上,∠APB90°,則OAOB________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案