日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知ABC中,ABAC5,BC6,點O是邊BC上的動點,以點O為圓心,OB為半徑作圓O,交AB邊于點D,過點D作∠ODP=∠B,交邊AC于點P,交圓O與點E.設OBx

          1)當點P與點C重合時,求PD的長;

          2)設APEPy,求y關于x的解析式及定義域;

          3)聯(lián)結OP,當OPOD時,試判斷以點P為圓心,PC為半徑的圓P與圓O的位置關系.

          【答案】(1)5;(2);(3)以點P為圓心,PC為半徑的圓P與圓O的位置關系是相交

          【解析】

          (1)根據(jù)OB=OD,AB=AC以及∠ADO=∠B+∠BOD=∠ODP+∠ADP結合題目所給∠ODP=∠B即可求出答案

          (2)分點P與C重合,P與E重合,D與A重合三種情況討論,求出相應的x值,再分兩個區(qū)間分別求出相應的解析式

          (3)連接OP,求出兩圓的半徑,圓心距即可判斷兩圓的位置關系

          (1)如圖1中,作AH⊥BC于H,CG⊥AB于G,

          ∵AB=AC=5,AH⊥BC,

          ∴BH=CH=3,AH=4,

          ,

          ,

          ,

          如圖2中,當點P與C重合時,

          ∵OB=OD,

          ∴∠B=∠ODB=∠ACB,

          ∵∠ADO=∠B+∠BOD=∠CDO+∠ADP,∠ODP=∠B,

          ∴∠ADP=∠BOD=∠BAC,

          ∴PA=PD=5;

          (簡單解法:易知∠A=180°﹣2∠B,只要證明∠ADP=180°﹣2∠B即可解決問題)

          (2)如圖2中,作CG⊥AB于G,OH⊥BD于H.

          ,

          ,

          ,

          ,

          如圖3中,當P、E重合時,作EG⊥AD于G.

          根據(jù)對稱性可知,B、E關于直線OD對稱,

          ,

          ,

          解得,

          當點D與A重合時

          ,

          時,如圖4中,

          ,

          ,

          時,如圖5中,作PG⊥AB于G.

          ,

          ,

          綜上所述,

          (3)如圖6中,連接OP.

          連接OP,作DK⊥OB,ON⊥BD、PM⊥BC于M,設ON=4k,則易知OB=DO=5k.BN=DN=3k,

          ,

          由△DOK∽△OPM可得,可得,

          k,

          ∴以點P為圓心,PC為半徑的圓P與圓O的位置關系是相交.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某校選拔射擊運動員參加比賽,甲、乙兩人在相同的條件下連續(xù)射靶各次,命中的環(huán)數(shù)(均為不大于10的正整數(shù))如表:

          次數(shù)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          1)當為何值時,選派乙去參加比賽更合適,請說明理由;

          2)若乙最后兩次射靶均命中環(huán),則選派誰去參加比賽更合適?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,將△ABC繞點B按逆時針方向旋轉得到△EBD,點E、點D分別與點A、點C對應,且點D在邊AC上,邊DE交邊AB于點F,△BDC∽△ABC.已知,AC5,那么△DBF的面積等于_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】水果市場的甲、乙兩家商店中都有批發(fā)某種水果,批發(fā)該種水果x千克時,在甲、乙兩家商店所花的錢分別為y1元和y2元,已知y1、y2關于x的函數(shù)圖象分別為如圖所示的折線OAB和射線OC

          1)當x的取值為   時,在甲乙兩家店所花錢一樣多?

          2)當x的取值為   時,在乙店批發(fā)比較便宜?

          3)如果批發(fā)30千克該水果時,在甲店批發(fā)比在乙店批發(fā)便宜50元,求射線AB的表達式,并寫出定義域.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,AECD,垂足為E,AFBC,垂足為F,AD4,BF3,∠EAF60°,設,如果向量,那么k的值是_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知拋物線yax22x+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(9,10)ACx軸.

          (1)求這條拋物線的解析式.

          (2)tanABC的值.

          (3)若點D為拋物線的頂點,點E是直線AC上一點,當△CDE與△ABC相似時,求點E的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動圓Q的圓心從點C出發(fā),沿著CB方向以1個單位長度/秒的速度勻速運動,同時動點P從點B出發(fā),沿著BA方向也以1個單位長度/秒的速度勻速運動,設運動時間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙PAB、BC的另一個交點分別為ED,連結ED、EQ

          (1)判斷并證明EDBC的位置關系,并求當點Q與點D重合時t的值;

          (2)當⊙PAC相交時,設CQ,PAC 截得的弦長為,求關于的函數(shù); 并求當⊙Q過點B時⊙PAC截得的弦長;

          (3)若⊙P與⊙Q相交,寫出t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

          (1)求證:四邊形EBCF是平行四邊形.

          (2)若BEC=90°,ABE=30°,AB=,求ED的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,三張黑桃撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進行摸牌游戲,甲先從中隨機抽取一張,記下數(shù)字再放回洗勻,乙再從中隨機抽取一張.

          1)甲抽到黑桃,這一事件是   事件(填不可能,隨機,必然);

          2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.

          查看答案和解析>>

          同步練習冊答案