日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(PAB的中點(diǎn))所在的直線上,得到經(jīng)過點(diǎn)D的折痕DE,若菱形邊長(zhǎng)為1,則點(diǎn)ECD的距離為_____.

          【答案】

          【解析】

          連接BD,過E作EH垂直于CD于點(diǎn)H.由菱形的性質(zhì)及∠A=60°,得到三角形ABD為等邊三角形,PAB的中點(diǎn),利用三線合一得到DP為角平分線,得到∠ADP=30°,∠ADC=120°,∠C=60°,進(jìn)而求出∠PDC=90°,由折疊的性質(zhì)得到∠CDE=PDE=45°.再設(shè)EH=x,表示出DH,CH,列出方程求解即可得.

          解:連接BD,過E作EH垂直于CD于點(diǎn)H.

          四邊形ABCD為菱形,∠A=60°,
          ∴△ABD為等邊三角形,∠ADC=120°,∠C=60°,
          PAB的中點(diǎn),
          DP為∠ADB的平分線,即∠ADP=BDP=30°,
          ∴∠PDC=90°,
          ∴由折疊的性質(zhì)得到∠CDE=PDE=45°,設(shè)EH=x,

          則DH=EH=x,

          ∠C=60°,則∠CEH=30°,EC=2CH,

          由勾股定理可得:,

          DH+CH=CD=1,

          ,解得

          即點(diǎn)ECD的距離為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)如圖,在中,是高,是角平分線,當(dāng),則____;

          2)若的度數(shù)分別用字母來表示(),你能找到之間的關(guān)系嗎? ______.(請(qǐng)直接寫出你發(fā)現(xiàn)的結(jié)論)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,王強(qiáng)在一次高爾夫球的練習(xí)中,在某處擊球,其飛行路線滿足拋物線y=x2+x,其中ym)是球飛行的高度,xm)是球飛行的水平距離.

          (1)飛行的水平距離是多少時(shí),球最高?

          (2)球從飛出到落地的水平距離是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點(diǎn),△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點(diǎn)F.若∠BAC=35°,則∠BFC的大小是( 。

          A. 105° B. 110° C. 100° D. 120°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四邊形ABCD中,∠A=145°,∠D=75°

          1)如圖1,若∠B=C,試求出∠C的度數(shù);

          2)如圖2,若∠ABC的角平分線BEDC于點(diǎn)E,且BEAD,試求出∠C的度數(shù);

          3)①如圖3,若∠ABC和∠BCD的角平分線交于點(diǎn)E,試求出∠BEC的度數(shù).

          ②在①的條件下,若延長(zhǎng)BA、CD交于點(diǎn)F(如圖4),將原來?xiàng)l件A=145°,∠D=75°”改為F=40°”,其他條件不變,∠BEC的度數(shù)會(huì)發(fā)生變化嗎?若不變,請(qǐng)說明理由;若變化,求出∠BEC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某電腦公司現(xiàn)有AB,C三種型號(hào)的甲品牌電腦和D,E兩種型號(hào)的乙品牌電腦.希望中學(xué)要從甲、乙兩種品牌電腦中各選購(gòu)一種型號(hào)的電腦.

          (1)寫出所有選購(gòu)方案(利用樹狀圖或列表方法表示);

          (2)如果(1)中各種選購(gòu)方案被選中的可能性相同,那么A型號(hào)電腦被選中的概率是多少?

          (3)現(xiàn)知希望中學(xué)用10萬元購(gòu)買甲、乙兩種品牌電腦共36臺(tái)(價(jià)格如圖所示),其中甲品牌電腦為A型號(hào)電腦,求購(gòu)買的A型號(hào)電腦有多少臺(tái)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)面積為的等腰三角形,它的一個(gè)內(nèi)角是30°,則以它的腰長(zhǎng)為邊長(zhǎng)的正方形面積為_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,D為等邊ABCBC上一點(diǎn),DEABE,若BDCD=21,DE=2 AE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲袋里裝有紅球5個(gè),白球2個(gè)和黑球12個(gè),乙袋里裝有紅球20個(gè),白球20個(gè)和黑球10個(gè).

          1)如果你想取出1個(gè)黑球,選哪個(gè)袋子成功的機(jī)會(huì)大?請(qǐng)說明理由.

          2)某同學(xué)說從乙袋取出10個(gè)紅球后,乙袋中的紅球個(gè)數(shù)仍比甲袋中紅球個(gè)數(shù)多,所以此時(shí)想取出1個(gè)紅球,選乙袋成功的機(jī)會(huì)大.你認(rèn)為此說法正確嗎?為什么?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案