日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某一工程招標(biāo)時(shí),接到甲.乙兩工程隊(duì)的投標(biāo)書,每施工一天,需付甲工程隊(duì)工程款1.5萬元,乙工程隊(duì)工程款1.1萬元.目前有三種施工方案:

          方案一:甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完成;

          方案二:乙隊(duì)單獨(dú)完成此項(xiàng)工程比規(guī)定日期多5天;

          方案三:若甲.乙兩隊(duì)合作4天,剩下的工程由乙隊(duì)單獨(dú)做也正好如期完成.

          哪一種方案既能如期完工又最節(jié)省工程款?

          【答案】選擇方案三.

          【解析】

          根據(jù)題意設(shè)時(shí)間為x列出方程求出所需時(shí)間,在求出三種方案所需工程款進(jìn)行比較.

          解:設(shè)規(guī)定完成時(shí)間為x天,得

          解之,得x=20

          所以,甲獨(dú)做要20天,乙獨(dú)做要25天

          方案一所需工程款為:20×1.5=30萬元

          方案二所需工程款為:25×1.1=27.5萬元

          方案三所需工程款為:(1.5+1. 1)×4+[1-()×4]÷×1.1=26.4萬元

          所以選擇方案三.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)在平時(shí)的練習(xí)中,遇到下面一道題目:

          如圖,∠AOC=90°,OE 平分∠BOC,OD平分∠AOB.

          ①若∠BOC=60°,求∠DOE 度數(shù);

          ②若∠BOC=α(0<α<90°),其他條件不變,求∠DOE 的度數(shù).

          (1)下面是某同學(xué)對(duì)①問的部分解答過程,請(qǐng)你補(bǔ)充完整.

          ∵OE 平分∠BOC,∠BOC=60°

          ∴∠BOE= . (角平分線的定義)

          ∵∠AOC=90°,∠BOC=60°

          ,

          ∵OD 平分∠AOB,

          ,(角平分線的定義)

          ∴∠DOE= .

          (注:符號(hào)∵表示因?yàn),用符?hào)∴表示所以).

          (2)仿照①的解答過程,完成第②小題.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將一副三角板放在同一平面內(nèi),使直角頂點(diǎn)重合于點(diǎn)O

          (1)如圖①,若∠AOB=155°,求∠AOD、BOC、DOC的度數(shù).

          (2)如圖①,你發(fā)現(xiàn)∠AOD與∠BOC的大小有何關(guān)系?∠AOB與∠DOC有何關(guān)系?直接寫出你發(fā)現(xiàn)的結(jié)論.

          (3)如圖②,當(dāng)AOCBOD沒有重合部分時(shí),(2)中你發(fā)現(xiàn)的結(jié)論是否還仍然成立,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀與思考:

          整式乘法與因式分解是方向相反的變形,由

          可得

          利用這個(gè)式子可以將某些二次項(xiàng)系數(shù)是1的二次三項(xiàng)式分解因式.

          例如:將式子分解因式.

          這個(gè)式子的常數(shù)項(xiàng),一次項(xiàng)系,

          所以

          解:

          上述分解因式的過程,也可以用十字相乘的形式形象地表示:先分解二次項(xiàng)系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如右圖).

          請(qǐng)仿照上面的方法,解答下列問題:

          (1)分解因式:=___________________;

          (2)若可分解為兩個(gè)一次因式的積,則整數(shù)P的所有可能值是________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請(qǐng)判斷ABEF的位置關(guān)系,并說明理由.

          解:   ,理由如下:

          ABCD,

          ∴∠B=∠BCD,(   

          ∵∠B70°,

          ∴∠BCD70°,(   

          ∵∠BCE20°,

          ∴∠ECD50°,

          ∵∠CEF130°,

             +   180°,

          EF   ,(   

          ABEF.(   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料:

          ,,,……,

          =

          = =

          解答下列問題:

          1)在和式中,第6項(xiàng)為______,第n項(xiàng)是__________

          2)上述求和的想法是通過逆用分式減法法則,將和式中的各分?jǐn)?shù)轉(zhuǎn)化為兩個(gè)數(shù)之差,使得除首末兩項(xiàng)外的中間各項(xiàng)的和為_______,從而達(dá)到求和的目的.

          3)受此啟發(fā),請(qǐng)你解下面的方程:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明到某服裝商場(chǎng)進(jìn)行社會(huì)調(diào)查,了解到該商場(chǎng)為了激勵(lì)營(yíng)業(yè)員的工作積極性,實(shí)行“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得如下信息:

          營(yíng)業(yè)員

          小麗

          小華

          月銷售件數(shù)(件)

          200

          150

          月總收入(元)

          1400

          1250

          假設(shè)營(yíng)業(yè)員的月基本工資為x元,銷售每件服裝獎(jiǎng)勵(lì)y元.

          1)求x、y的值;

          2)若營(yíng)業(yè)員小麗某月的總收入不低于1800元,那么小麗當(dāng)月至少要賣服裝多少件?

          3)商場(chǎng)為了多銷售服裝,對(duì)顧客推薦一種購買方式:如果購買甲3件,乙2件,丙1件共需315元;如果購買甲1件,乙2件,丙3件共需285元.某顧客想購買甲、乙、丙各一件共需   元.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

          (1)請(qǐng)判斷四邊形EBGD的形狀,并說明理由;

          (2)若∠ABC=30°,∠C=45°,ED=2,點(diǎn)H是BD上的一個(gè)動(dòng)點(diǎn),求HG+HC的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.

          (1)求足球和籃球的單價(jià)各是多少元?

          (2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案