日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點(diǎn),∠ABC=30°,且AB=AC.
          (1)求證:AB為⊙O的切線;
          (2)求弦AC的長;
          (3)求圖中陰影部分的面積.
          (1)證明:如圖,連接OA.
          ∵AB=AC,∠ABC=30°,
          ∴∠ABC=∠ACB=30°.
          ∴∠AOB=2∠ACB=60°,
          ∴在△ABO中,∠BAO=180°-∠ABO-∠AOB=90°,即AB⊥OA,
          又∵OA是⊙O的半徑,
          ∴AB為⊙O的切線;

          (2)如圖,連接AD.
          ∵CD是⊙O的直徑,
          ∴∠DAC=90°.
          ∵由(1)知,∠ACB=30°,
          ∴AD=
          1
          2
          CD=4,
          則根據(jù)勾股定理知AC=
          CD2-AD2
          =4
          3
          ,即弦AC的長是4
          3
          ;

          (3)由(2)知,在△ADC中,∠DAC=90°,AD=4,AC=4
          3
          ,則S△ADC=
          1
          2
          AD•AC=
          1
          2
          ×4×4
          3
          =8
          3

          ∵點(diǎn)O是△ADC斜邊上的中點(diǎn),
          ∴S△AOC=
          1
          2
          S△ADC=4
          3

          根據(jù)圖示知,S陰影=S扇形ADO+S△AOC=
          60π×42
          360
          +4
          3
          =
          3
          +4
          3
          ,即圖中陰影部分的面積是
          3
          +4
          3

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,以點(diǎn)A(3,0)為圓心的圓與x軸交于原點(diǎn)O和點(diǎn)B,直線l與x軸、y軸分別交于點(diǎn)C(-2,0)、D(0,3).
          (1)求出直線l的解析式;
          (2)若直線l繞點(diǎn)C順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)后的直線與y軸交于點(diǎn)E(0,b),且0<b<3,在旋轉(zhuǎn)的過程中,直線CE與⊙A有幾種位置關(guān)系?試求出每種位置關(guān)系時(shí),b的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(-1,0),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于點(diǎn)E,則△ABE面積的最大值是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖1,AB是⊙O的直徑,直線l交⊙O于C1、C2,AD⊥l,垂足為D.
          (1)求證:AC1•AC2=AB•AD.
          (2)若將直線l向上平移(如圖2),交⊙O于C1、C2,使弦C1C2與直徑AB相交(交點(diǎn)不與A、B重合),其他條件不變,請你猜想,AC1、AC2、AB、AD之間的關(guān)系,并說明理由.
          (3)若將直線l平移到與⊙O相切時(shí),切點(diǎn)為C,其他條件不變,請你在圖3上畫出變化后的圖形,標(biāo)好相應(yīng)的字母并猜想AC、AB、AD的關(guān)系是什么?(只寫出關(guān)系,不加以說明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在△ABC中,∠BCA=90°,以BC為直徑的⊙O交AB于點(diǎn)P,Q是AC的中點(diǎn).判斷直線PQ與⊙O的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,AB是⊙O的直徑,D是圓上一點(diǎn),
          AD
          =
          DC
          ,連接AC,過點(diǎn)D作弦AC的平行線MN.
          (1)證明:MN是⊙O的切線;
          (2)已知AB=10,AD=6,求弦BC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          已知:如圖,在同心圓中,大圓的弦AB,CD分別與小圓相切于點(diǎn)E,F(xiàn),則弦AB,CD的大小關(guān)系是( 。
          A.AB>CDB.AB=CDC.AB<CDD.無法確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖:水平地面上有一個(gè)球,現(xiàn)用如下方法測量球的表面積(球的表面積公式S=4πR2),用銳角∠BAC=60°的直角三角板的斜邊緊靠球面,P為切點(diǎn),一條直角邊AC緊靠地面,并使三角板與地面垂直,如果測得PA=1m,則球的表面積等于______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在⊙O中,弦AB與半徑相等,連接OB并延長,使BC=OB.
          (1)試判斷直線AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
          (2)請你在⊙O上找到一個(gè)點(diǎn)D,使AD=AC(完成作圖,證明你的結(jié)論),并求∠ABD的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案