日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知矩形ABCD,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

          (1)如圖①,連接AF、CE,求證四邊形AFCE是菱形;

          (2)求AF的長(zhǎng);

          (3)如圖②,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周,即點(diǎn)P自停止,點(diǎn)Q自停止,在運(yùn)動(dòng)過(guò)程中:已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

           

          【答案】

          (1)先證明四邊形AFCE為平行四邊形,再根據(jù)對(duì)角線互相垂直平分的平行四邊形是菱形作出判定;根據(jù)勾股定理即可求得AF的長(zhǎng);(2)AF=5cm;(3)t=

          【解析】

          試題分析:(1)先證明四邊形AFCE為平行四邊形,再根據(jù)對(duì)角線互相垂直平分的平行四邊形是菱形作出判定;

          (2)根據(jù)勾股定理即可求得AF的長(zhǎng);

          (3)分情況討論可知,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可.

          (1)∵四邊形ABCD是矩形,

          ∴AD∥BC,

          ∴∠CAD=∠ACB,∠AEF=∠CFE,

          ∵EF垂直平分AC,垂足為O,

          ∴OA=OC,

          ∴△AOE≌△COF,

          ∴OE=OF,

          ∴四邊形AFCE為平行四邊形,

          又∵EF⊥AC,

          ∴四邊形AFCE為菱形,

          (2)設(shè)菱形的邊長(zhǎng)AF=CF=xcm,則BF=(8-x)cm,

          在Rt△ABF中,AB=4cm,

          由勾股定理得42+(8-x)2=x2,

          解得x=5,

          ∴AF=5cm;

          (3)顯然當(dāng)P點(diǎn)在AF上時(shí),Q點(diǎn)在CD上,此時(shí)A、C、P、Q四點(diǎn)不可能構(gòu)成平行四邊形;

          同理P點(diǎn)在AB上時(shí),Q點(diǎn)在DE或CE上或P在BF,Q在CD時(shí)不構(gòu)成平行四邊形,也不能構(gòu)成平行四邊形.

          因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時(shí),才能構(gòu)成平行四邊形,

          ∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),PC=QA,

          ∵點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,

          ∴PC=5t,QA=12-4t,

          ∴5t=12-4t,解得t=

          ∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),t=秒.

          考點(diǎn):矩形的性質(zhì)、菱形的判定與性質(zhì)、勾股定理、平行四邊形的判定與性質(zhì)

          點(diǎn)評(píng):本題知識(shí)點(diǎn)多,綜合性較強(qiáng),一般是中考?jí)狠S題,要注意分類思想的應(yīng)用.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          11、已知矩形ABCD在平面直角坐標(biāo)系中的位置如圖所示,將矩形ABCD沿x軸向左平移到使點(diǎn)C與坐標(biāo)原點(diǎn)重合后,再沿y軸向下平移到使點(diǎn)D與坐標(biāo)原點(diǎn)重合,此時(shí)點(diǎn)B的坐標(biāo)是
          (-5,-3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知矩形ABCD,CN平分∠DCM,E為BC邊上一點(diǎn),EF⊥AE交CN于點(diǎn)F,以AE,E精英家教網(wǎng)F為邊作矩形AEFH.
          (1)若ABCD為正方形,求證:AEFH也為正方形;
          (2)若AB=8,BC=10,BE=6,求EF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知矩形ABCD中,BC=6,AB=8,延長(zhǎng)AD到點(diǎn)E,使AE=15,連接BE交AC于點(diǎn)P.
          (1)求AP的長(zhǎng);
          (2)若以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷線段BE與⊙A的位置關(guān)系并說(shuō)明理由;
          (3)已知以點(diǎn)A為圓心,r1為半徑的動(dòng)⊙A,使點(diǎn)D在動(dòng)⊙A的內(nèi)部,點(diǎn)B在動(dòng)⊙A的外部.
          ①求動(dòng)⊙A的半徑r1的取值范圍;
          ②若以點(diǎn)C為圓心,r2為半徑的動(dòng)⊙C與動(dòng)⊙A相切,求r2的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),沿x軸向右以毎秒1個(gè)單位長(zhǎng)精英家教網(wǎng)的速度運(yùn)動(dòng)t秒(t>0),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)O和點(diǎn)P,已知矩形ABCD的三個(gè)頂點(diǎn)為 A (1,0),B (1,-5),D (4,0).
          (1)求c,b (用含t的代數(shù)式表示):
          (2)當(dāng)4<t<5時(shí),設(shè)拋物線分別與線段AB,CD交于點(diǎn)M,N.
          ①在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,你認(rèn)為∠AMP的大小是否會(huì)變化?若變化,說(shuō)明理由;若不變,求出∠AMP的值;
          ②求△MPN的面積S與t的函數(shù)關(guān)系式,并求t為何值時(shí),S=
          218

          (3)在矩形ABCD的內(nèi)部(不含邊界),把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“好點(diǎn)”.若拋物線將這些“好點(diǎn)”分成數(shù)量相等的兩部分,請(qǐng)直接寫(xiě)出t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2011•通州區(qū)二模)已知矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系(如圖).
          (1)寫(xiě)出A、B、C、D及AD的中點(diǎn)E的坐標(biāo);
          (2)求以E為頂點(diǎn)、對(duì)稱軸平行于y軸,并且經(jīng)過(guò)點(diǎn)B、C的拋物線的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案