【題目】已知,函數(shù)
.
(1)求證:曲線在點(diǎn)
處的切線過定點(diǎn);
(2)若是
在區(qū)間
上的極大值,但不是最大值,求實(shí)數(shù)
的取值范圍;
(3)求證:對任意給定的正數(shù) ,總存在
,使得
在
上為單調(diào)函數(shù).
【答案】(1)證明見解析;(2);(3)證明見解析.
【解析】
試題分析:(1)求出切點(diǎn)坐標(biāo)及切線方程,切線恒過定點(diǎn)即與參數(shù)無關(guān),令系數(shù)為
,可得定點(diǎn)坐標(biāo);(2)
,要使
成為極大值,因此
,又
不是最大值,而
在
單增,
單減,
單增,因此
,可求得
的范圍;(3)
在
單增,
單減,
單增,又
,所以要使
在
單調(diào),只需
,即
,故存在.
試題解析:解:(1)證明:∵,∴
∵,∴曲線
在點(diǎn)
處的切線方程為
,
即,令
,則
,
故曲線在點(diǎn)
處的切線過定點(diǎn)
(2)解:,
令得
或
∵是
在區(qū)間
上的極大值,∴
,∴
令,得
或
遞增;令
,得
遞減,
∵不是
在區(qū)間
上的最大值,
∴在區(qū)間
上的最大值為
,
∴,∴
,又
,∴
(3)證明:,
∵,∴
令,得
或
遞增;令
,得
遞減,
∵,∴
若在
上為單調(diào)函數(shù),則
,即
故對任意給定的正數(shù),總存在
(其中
),使得
在
上為單調(diào)函數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.
(1)已知、
,
三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求
,
的值;
(2)該電子商務(wù)平臺將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵潛在消費(fèi)人群的消費(fèi),該平臺決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過
的部分按平價收費(fèi),超過
的部分按議價收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)
(噸),估計(jì)
的值,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
).
(1)若曲線在點(diǎn)
處與直線
相切,求
的值;
(2)若函數(shù)有兩個零點(diǎn)
,
,試判斷
的符號,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(1)若和
在區(qū)間
上具有時間的單調(diào)性,求實(shí)數(shù)
的取值范圍;
(2)若,且函數(shù)
的最小值為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為數(shù)列
的前
項(xiàng)和,對任意的
,都有
,數(shù)列
滿足
,
.
(1)求證:數(shù)列是等比數(shù)列,并求
的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;
(3)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十二屆全國人民代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)分別于2017年3月5日和3月3日在北京開幕,某高校學(xué)生會為了解該校學(xué)生對全國兩會的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對兩會“比較關(guān)注”與“不太關(guān)注”兩類,已知這200名學(xué)生中男生比女生多20人,對兩會“比較關(guān)注”的學(xué)生中男生人數(shù)比女生人數(shù)之比為,對兩會“不太關(guān)注”的學(xué)生中男生比女生少5人.
(Ⅰ)根據(jù)題意建立的列聯(lián)表,并判斷是否有
的把握認(rèn)為男生與女生對兩會的關(guān)注有差異?
(Ⅱ)該校學(xué)生會從對兩會“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再從這7人中隨機(jī)選出2人參與兩會宣傳活動,求這2人全是男生的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的單調(diào)遞減函數(shù)
,對任意
都有
,
.
(Ⅰ)判斷函數(shù)的奇偶性,并證明之;
(Ⅱ)若對任意,不等式
(
為常實(shí)數(shù))都成立,求
的取值范圍;(Ⅲ)設(shè)
,
,
,
,
.
若
,
,比較
的大小并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個頂點(diǎn)分別為是
,
,
.
(Ⅰ)求邊上的高
所在的直線方程;
(Ⅱ)求過點(diǎn)且在兩坐標(biāo)軸上的截距相等的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com