【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,
,
,
,點(diǎn)E為AD的中點(diǎn),
,
平面ABCD,且
求證:
;
線段PC上是否存在一點(diǎn)F,使二面角
的余弦值是
?若存在,請找出點(diǎn)F的位置;若不存在,請說明理由.
【答案】(1)見解析;(2)見解析.
【解析】
推導(dǎo)出
,
,從而
,由
平面
,得
,由此能證明
平面
,從而
推導(dǎo)出
兩兩垂直,建立以
為坐標(biāo)原點(diǎn),
所在直線分別為
,
,
軸的坐標(biāo)系,利用向量法能求出線段
上存在一點(diǎn)
,當(dāng)點(diǎn)
滿足
時(shí),二面角
的余弦值是
證明:,
,
,
,E為AD的中點(diǎn),
,
≌
,
,
,
,
,
又平面ABCD,
平面ABCD,
,
又,且PH,
平面PEC,
平面PEC,
又平面PEC,
.
解:由
可知
∽
,
由題意得,
,
,
,
,
,
,
、EC、BD兩兩垂直,
建立以H為坐標(biāo)原點(diǎn),HB、HC、HP所在直線分別為x,y,z軸的坐標(biāo)系,
0,
,
0,
,
4,
,
0,
,
0,
,
假設(shè)線段PC上存在一點(diǎn)F滿足題意,
與
共線,
存在唯一實(shí)數(shù)
,
,滿足
,
解得,
設(shè)向量y,
為平面CPD的一個(gè)法向量,且
,
,
,取
,得
,
同理得平面CPD的一個(gè)法向量,
二面角
的余弦值是
,
,
由,解得
,
,
,
線段PC上存在一點(diǎn)F,當(dāng)點(diǎn)F滿足
時(shí),二面角
的余弦值是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列函數(shù)的解析式:
(1)已知f(x)是二次函數(shù),且f(0)=2,f(x+1)-f(x)=x-1,求f(x);
(2)已知3f(x)+2f(-x)=x+3,求f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
且
)是定義在
上的奇函數(shù).
(1)求的值;
(2)求函數(shù)的值域;
(3)當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年,樓市火爆,特別是一線城市.某一線城市采取“限價(jià)房”搖號制度,客戶以家庭為單位進(jìn)行抽簽,若有套房源,則設(shè)置
個(gè)中獎簽,客戶抽到中獎簽視為中簽,中簽家庭可以在指定小區(qū)提供的房源中隨機(jī)抽取一個(gè)房號,現(xiàn)共有20戶家庭去抽取6套房源.
(l)求每個(gè)家庭能中簽的概率;
(2)已知甲、乙兩個(gè)友好家庭均已中簽,并共同前往某指定小區(qū)抽取房號,目前該小區(qū)剩余房源有某單元27、28兩個(gè)樓層共6套房,其中,第27層有2套房,第28層有4套房.記甲、乙兩個(gè)家庭抽取到第28層的房源套數(shù)為,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))
(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動時(shí)間超過4個(gè)小時(shí)的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時(shí)間超過4個(gè)小時(shí).請完成每周平均體育運(yùn)動時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時(shí)間與性別有關(guān)”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的最小值;
(2)若函數(shù)在區(qū)間
上無零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長均為2,平面
平面
,
,
為
的中點(diǎn).
(1)證明: ;
(2)若是棱
的中點(diǎn),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>A的函數(shù)f(x),若對任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),則稱函數(shù)f(x)為“定義域上的M函數(shù)”,給出以下五個(gè)函數(shù):
①f(x)=2x+3,x∈R;②f(x)=x2,x∈;③f(x)=x2+1,x∈
;④f(x)=sin x,x∈
;⑤f(x)=log2x,x∈[2,+∞).
其中是“定義域上的M函數(shù)”的有( )
A. 2個(gè) B. 3個(gè)
C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,若
(
,
,
為常數(shù)),則
稱為“等方差數(shù)列”.下列對“等方差數(shù)列”的判斷:
①若是等方差數(shù)列,則
是等差數(shù)列;
②是等方差數(shù)列;
③若是等方差數(shù)列,則
(
,
為常數(shù))也是等方差數(shù)列.其中正確命題序號為
__________(寫出所有正確命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com