日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)若恒成立,求a的取值范圍;

          2)若,證明:有唯一的極值點(diǎn)x,且.

          【答案】1.2)見(jiàn)解析

          【解析】

          1)計(jì)算得到,再證明當(dāng))時(shí),,先證明),討論兩種情況,計(jì)算得到證明.

          2)求導(dǎo)得到,,得到存在唯一實(shí)數(shù),使,存在唯一實(shí)數(shù),使,得到,得到證明.

          1)由,得,即,解得,

          以下證明,當(dāng))時(shí),.

          為此先證:.

          ,則

          ,則.

          ),可知,函數(shù)單調(diào)遞增,

          ,即),

          綜上所述:.

          ),則當(dāng)時(shí),,

          ,即;

          當(dāng)時(shí),,由),

          .

          故當(dāng))時(shí),.

          綜上,所求a的取值范圍是.

          2,令

          ,∵,∴上的增函數(shù),

          ,

          故存在唯一實(shí)數(shù),使,當(dāng)時(shí),遞減;當(dāng)時(shí),,遞增.

          ,則,

          ,,.

          故存在唯一實(shí)數(shù),使.

          當(dāng)時(shí),,遞減;

          當(dāng)時(shí),遞增.

          所以在區(qū)間有唯一極小值點(diǎn),且極小值為.

          又由,得,

          .

          .

          以下只需證明,即證,.

          ,∴.

          ,所以.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平行四邊形ABCD中,,EF分別為AD,BC的中點(diǎn).以EF為折痕把四邊形EFCD折起,使點(diǎn)C到達(dá)點(diǎn)M的位置,點(diǎn)D到達(dá)點(diǎn)N的位置,且

          1)求證:平面NEB

          2)若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件,若目標(biāo)函數(shù)的最大值為4,則ab的最大值為________,的最小值為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)的最小值為0,其中.

          1)求的值;

          2)若對(duì)任意的,有恒成立,求實(shí)數(shù)的最小值;

          3)記為不超過(guò)的最大整數(shù),求的值.

          (參考數(shù)據(jù):,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2019年,全國(guó)各地區(qū)堅(jiān)持穩(wěn)中求進(jìn)工作總基調(diào),經(jīng)濟(jì)運(yùn)行總體平穩(wěn),發(fā)展水平邁上新臺(tái)階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進(jìn),全年最終消費(fèi)支出對(duì)國(guó)內(nèi)生產(chǎn)總值增長(zhǎng)的貢獻(xiàn)率為57.8%.下圖為2019年居民消費(fèi)價(jià)格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)

          下列結(jié)論中不正確的是(

          A.2019年第三季度的居民消費(fèi)價(jià)格一直都在增長(zhǎng)

          B.20187月份的居民消費(fèi)價(jià)格比同年8月份要低一些

          C.2019年全年居民消費(fèi)價(jià)格比2018年漲了2.5%以上

          D.20193月份的居民消費(fèi)價(jià)格全年最低

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的前項(xiàng)和為,滿(mǎn)足.

          1)求證:數(shù)列等差數(shù)列;

          2)當(dāng)時(shí),記,是否存在正整數(shù)、,使得、成等比數(shù)列?若存在,求出所有滿(mǎn)足條件的數(shù)對(duì);若不存在,請(qǐng)說(shuō)明理由;

          3)若數(shù)列、、、、、是公比為的等比數(shù)列,求最小正整數(shù),使得當(dāng)時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          1)討論的單調(diào)性;

          2)若函數(shù)有兩個(gè)不同的極值點(diǎn)、,求證:;

          3)設(shè),函數(shù)的反函數(shù)為,令,、,,若時(shí),對(duì)任意的恒成立,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,與等邊所在的平面相互垂直,,為線段中點(diǎn),直線與平面交于點(diǎn)..

          1)求證:平面平面;

          2)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,平面平面,,,且.


          1)過(guò)作截面與線段交于點(diǎn)H,使得平面,試確定點(diǎn)H的位置,并給出證明;

          2)在(1)的條件下,若二面角的大小為,試求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案