日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2008屆全國百套高考數學模擬試題分類匯編

          圓錐曲線

          三、解答題(第一部分)

          1、(廣東省廣州執(zhí)信中學、中山紀念中學、深圳外國語學校三校期末聯考)設、分別是橢圓的左、右焦點.

          試題詳情

          (Ⅰ)若P是該橢圓上的一個動點,求的最大值和最小值;

             (Ⅱ)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

          試題詳情

          解:(Ⅰ)易知

          試題詳情

          設P(x,y),則

          試題詳情

           

          試題詳情

          試題詳情

          ,即點P為橢圓短軸端點時,有最小值3;

          試題詳情

          ,即點P為橢圓長軸端點時,有最大值4

          (Ⅱ)假設存在滿足條件的直線l易知點A(5,0)在橢圓的外部,當直線l的斜率不存在時,直線l與橢圓無交點,所在直線l斜率存在,設為k

          試題詳情

          直線l的方程為

          試題詳情

          由方程組

          試題詳情

          依題意

          試題詳情

          時,設交點C,CD的中點為R,

          試題詳情

          試題詳情

          試題詳情

          又|F2C|=|F2D|

          試題詳情

           

          試題詳情

          ∴20k2=20k2-4,而20k2=20k2-4不成立,   所以不存在直線,使得|F2C|=|F2D|

          綜上所述,不存在直線l,使得|F2C|=|F2D|

          試題詳情

          2、(江蘇省啟東中學高三綜合測試二)已知動圓過定點P(1,0),且與定直線L:x=-1相切,點C在l上.

          (1)求動圓圓心的軌跡M的方程;

          試題詳情

          (i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由

          (ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

          解:(1)依題意,曲線M是以點P為焦點,直線l為準線的拋物線,所以曲線M的方程為y2=4x.

          試題詳情

          假設存在點C(-1,y),使△ABC為正三角形,則|BC|=|AB|且|AC|=|AB|,即

          試題詳情

             

          因此,直線l上不存在點C,使得△ABC是正三角形.

          (ii)解法一:設C(-1,y)使△ABC成鈍角三角形,

          試題詳情

          試題詳情

          ,

          試題詳情

          ∠CAB為鈍角.

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          .  

          該不等式無解,所以∠ACB不可能為鈍角.

          因此,當△ABC為鈍角三角形時,點C的縱坐標y的取值范圍是:

          試題詳情

          .

          解法二: 以AB為直徑的圓的方程為:

          試題詳情

          .

          試題詳情

          當直線l上的C點與G重合時,∠ACB為直角,當C與G 點不重合,且A,

          B,C三點不共線時, ∠ACB為銳角,即△ABC中∠ACB不可能是鈍角.

          因此,要使△ABC為鈍角三角形,只可能是∠CAB或∠CBA為鈍角.

          試題詳情

          .

          試題詳情

          .

          試題詳情

          A,B,C三點共 線,不構成三角形.

          因此,當△ABC為鈍角三角形時,點C的縱坐標y的取值范圍是:

          試題詳情

          試題詳情

          3、(江蘇省啟東中學高三綜合測試三)(1)在雙曲線xy=1上任取不同三點A、B、C,證明:ㄓABC的垂心H也在該雙曲線上;

          (2)若正三角形ABC的一個頂點為C(?1,?1),另兩個頂點A、B在雙曲線xy=1另一支上,求頂點A、B的坐標。

          試題詳情

          解:(1)略;(2)A(2+,2-), B(2-,2+)或A(2-,2+), B(2+,2-)

          試題詳情

          4、(江蘇省啟東中學高三綜合測試四)已知以向量v=(1, )為方向向量的直線l過點(0, ),拋物線C(p>0)的頂點關于直線l的對稱點在該拋物線上.

          (Ⅰ)求拋物線C的方程;

          試題詳情

          (Ⅱ)設A、B是拋物線C上兩個動點,過A作平行于x軸的直線m,直線OB與直線m交于點N,若(O為原點,A、B異于原點),試求點N的軌跡方程.

          試題詳情

          解:(Ⅰ)由題意可得直線l     ①

          試題詳情

          過原點垂直于l的直線方程為     ②

          試題詳情

          解①②得

          ∵拋物線的頂點關于直線l的對稱點在該拋物線的準線上.

          試題詳情

          ,

          試題詳情

          ∴拋物線C的方程為

          試題詳情

          (Ⅱ)設,,

          試題詳情

          ,得

          試題詳情

          試題詳情

          解得      ③

          試題詳情

          直線ON,即      ④

          試題詳情

          由③、④及得,

          試題詳情

          N的軌跡方程為

          試題詳情

          5、(安徽省皖南八校2008屆高三第一次聯考)已知線段AB過軸上一點,斜率為,兩端點A,B到軸距離之差為,

          試題詳情

          (1)求以O為頂點,軸為對稱軸,且過A,B兩點的拋物線方程;

          (2)設Q為拋物線準線上任意一點,過Q作拋物線的兩條切線,切點分別為M,N,求證:直線MN過一定點;

          試題詳情

          解:(1)設拋物線方程為,AB的方程為,

          試題詳情

          聯立消整理,得;∴,

          試題詳情

          又依題有,∴,∴拋物線方程為;

          試題詳情

          (2)設,,∵,

          試題詳情

          的方程為;

          試題詳情

          ,∴,同理

          試題詳情

          為方程的兩個根;∴;

          試題詳情

          ,∴的方程為

          試題詳情

          ,顯然直線過點

          試題詳情

          6、(江西省五校2008屆高三開學聯考)已知圓上的動點,點Q在NP上,點G在MP上,且滿足.

             (I)求點G的軌跡C的方程;

          試題詳情

             (II)過點(2,0)作直線,與曲線C交于A、B兩點,O是坐標原點,設 是否存在這樣的直線,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.

          試題詳情

          解:(1)Q為PN的中點且GQ⊥PN

          試題詳情

              GQ為PN的中垂線|PG|=|GN|                       

          試題詳情

                 ∴|GN|+|GM|=|MP|=6,故G點的軌跡是以M、N為焦點的橢圓,其長半軸長,半焦距,∴短半軸長b=2,∴點G的軌跡方程是 ………5分

          試題詳情

             (2)因為,所以四邊形OASB為平行四邊形

          試題詳情

              若存在l使得||=||,則四邊形OASB為矩形

          試題詳情

              若l的斜率不存在,直線l的方程為x=2,由

          試題詳情

              矛盾,故l的斜率存在. ………7分

          試題詳情

              設l的方程為

          試題詳情

             

          試題詳情

                 ①

          試題詳情

             

          試題詳情

                 ②   ……………9分  

          試題詳情

              把①、②代入

          試題詳情

              ∴存在直線使得四邊形OASB的對角線相等.

          試題詳情

          7、(安徽省淮南市2008屆高三第一次模擬考試)已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點恰好是拋物線y=x2的焦點,離心率等于.

          (1)求橢圓C的方程;

          試題詳情

          (2)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若12,求證λ12為定值.

          試題詳情

          解:(I)設橢圓C的方程為,則由題意知b = 1.

          試題詳情

          試題詳情

          ∴橢圓C的方程為  …………………………………………………5分

          試題詳情

             (II)方法一:設A、B、M點的坐標分別為

          易知F點的坐標為(2,0).

          試題詳情

          試題詳情

          將A點坐標代入到橢圓方程中,得

          試題詳情

          去分母整理得 …………………………………………10分

          試題詳情

          試題詳情

                 …………………………………………………………12分

          試題詳情

          方法二:設A、B、M點的坐標分別為又易知F點的坐標為(2,0).

          試題詳情

          顯然直線l存在的斜率,設直線l的斜率為k,則直線l的方程是

          將直線l的方程代入到橢圓C的方程中,消去y并整理得

          試題詳情

                ……………………………………7分

          試題詳情

               ……………………………………8分

          試題詳情

          試題詳情

          試題詳情

          8、(安徽省巢湖市2008屆高三第二次教學質量檢測)已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足,.

          (Ⅰ)⑴當點P在y軸上移動時,求點M的軌跡C的方程;

          試題詳情

          (Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數,使,且.

          試題詳情

          解:(Ⅰ)設點M(x,y),由得P(0,),Q().

          試題詳情

          得(3,)?()=0,即

          試題詳情

          又點Q在x軸的正半軸上,故點M的軌跡C的方程是.……6分

          (Ⅱ)解法一:由題意可知N為拋物線C:y2=4x的焦點,且A、B為過焦點N的直線與拋物線C的兩個交點。

          試題詳情

          當直線AB斜率不存在時,得A(1,2),B(1,-2),|AB|,不合題意;………7分

          試題詳情

          當直線AB斜率存在且不為0時,設,代入

          試題詳情

          則|AB|,解得           …………………10分

          試題詳情

                 代入原方程得,由于,所以,

          試題詳情

                 由,得  .              ……………………13分

          解法二:由題設條件得

          試題詳情

            

          試題詳情

           

          試題詳情

          由(6)、(7)解得,又,故.

          試題詳情

          9、(北京市朝陽區(qū)2008年高三數學一模)已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關于軸的對稱點為.

          (Ⅰ)求橢圓W的方程;

          試題詳情

          (Ⅱ)求證: ();

          試題詳情

          (Ⅲ)求面積的最大值.

          試題詳情

          解:(Ⅰ)設橢圓W的方程為,由題意可知

          試題詳情

          解得,,,

          試題詳情

          所以橢圓W的方程為.……………………………………………4分

          試題詳情

          (Ⅱ)解法1:因為左準線方程為,所以點坐標為.于是可設直線 的方程為

          試題詳情

          .

          試題詳情

          由直線與橢圓W交于兩點,可知

          試題詳情

          ,解得

          試題詳情

          設點,的坐標分別為,,

          試題詳情

          ,,

          試題詳情

          因為,

          試題詳情

          所以,.

          試題詳情

          又因為

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          所以.    ……………………………………………………………10分

          試題詳情

          解法2:因為左準線方程為,所以點坐標為.

          試題詳情

          于是可設直線的方程為,點,的坐標分別為,,

          試題詳情

          則點的坐標為,

          由橢圓的第二定義可得

          試題詳情

          ,

          試題詳情

          所以,三點共線,即.…………………………………10分

          (Ⅲ)由題意知

          試題詳情

          試題詳情

           

          試題詳情

              

          試題詳情

               ,

          試題詳情

          當且僅當時“=”成立,

          試題詳情

          所以面積的最大值為.

          試題詳情

          10、(北京市崇文區(qū)2008年高三統(tǒng)一練習一)已知拋物線,點P(1,-1)在拋物線C上,過點P作斜率為k1、k2的兩條直線,分別交拋物線C于異于點P的兩點Ax1,y1),Bx2,y2),且滿足k1+k2=0.

             (I)求拋物線C的焦點坐標;

          試題詳情

             (II)若點M滿足,求點M的軌跡方程.

          試題詳情

          解:(I)將P(1,-1)代入拋物線C的方程a=-1,

          試題詳情

              ∴拋物線C的方程為,即

          試題詳情

              焦點坐標為F(0,-).……………………………………4分

          試題詳情

             (II)設直線PA的方程為,

          試題詳情

              聯立方程消去y得

          試題詳情

              則

          試題詳情

              由………………7分

          試題詳情

              同理直線PB的方程為

          試題詳情

              聯立方程消去y得

          試題詳情

              則

          試題詳情

              又…………………………9分

          試題詳情

              設點M的坐標為(x,y),由

          試題詳情

             

          試題詳情

              又…………………………………………11分

          試題詳情

             

          試題詳情

              ∴所求M的軌跡方程為:

          試題詳情

          11、(北京市東城區(qū)2008年高三綜合練習一)已知定圓圓心為A,動圓M過點B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.

             (I)求曲線C的方程;

          試題詳情

             (II)若點為曲線C上一點,求證:直線與曲線C有且只有一個交點.

          試題詳情

          解:(I)圓A的圓心為,

          試題詳情

          設動圓M的圓心

          由|AB|=2,可知點B在圓A內,從而圓M內切于圓A,

          故|MA|=r1―r2,即|MA|+|MB|=4,

          所以,點M的軌跡是以A,B為焦點的橢圓,

          試題詳情

          設橢圓方程為,由

          試題詳情

          故曲線C的方程為                                …………6分

          試題詳情

             (II)當,

          試題詳情

          試題詳情

          消去    ①

          試題詳情

          由點為曲線C上一點,

          試題詳情

          試題詳情

          于是方程①可以化簡為 解得,

          試題詳情

          試題詳情

          綜上,直線l與曲線C有且只有一個交點,且交點為.

          試題詳情

          12、(北京市東城區(qū)2008年高三綜合練習二)已知雙曲線的一條漸近線方程為,兩條準線的距離為l.

             (1)求雙曲線的方程;

             (2)直線l過坐標原點O且和雙曲線交于兩點M、N,點P為雙曲線上異于M、N的一點,且直線PM,PN的斜率均存在,求kPM?kPN的值.

          試題詳情

          (1)解:依題意有:

          試題詳情

          可得雙曲線方程為 ………………………………………………6分

          試題詳情

             (2)解:設

          試題詳情

          試題詳情

          所以

          試題詳情

          (Ⅲ)已知點M(,0),N(0, 1),在(Ⅱ)的條件下,是否存在常數k,使得向量共線?如果存在,求出k的值;如果不存在,請說明理由.

              解:(Ⅰ) 設C(x, y),

          試題詳情

          , ,

          試題詳情

          ,

          ∴ 由定義知,動點C的軌跡是以A、B為焦點,長軸長為2的橢圓除去與x軸的兩個交點.

          試題詳情

          .  ∴ .

          試題詳情

          ∴ W:   . …………………………………………… 2分

          試題詳情

          (Ⅱ) 設直線l的方程為,代入橢圓方程,得.

          試題詳情

               整理,得.         ①………………………… 5分

               因為直線l與橢圓有兩個不同的交點P和Q等價于

          試題詳情

               ,解得.

          試題詳情

          ∴ 滿足條件的k的取值范圍為 ………… 7分

           

          試題詳情

          (Ⅲ)設P(x1,y1),Q(x2,y2),則=(x1+x2,y1+y2),

          試題詳情

               由①得.                 ②

          試題詳情

               又                ③

          試題詳情

               因為, 所以.……………………… 11分

          試題詳情

               所以共線等價于.

          試題詳情

               將②③代入上式,解得.

          試題詳情

               所以不存在常數k,使得向量共線.

          試題詳情

          14、(北京市海淀區(qū)2008年高三統(tǒng)一練習一)已知點分別是射線上的動點,為坐標原點,且的面積為定值2.

          試題詳情

          (I)求線段中點的軌跡的方程;

          試題詳情

          (II)過點作直線,與曲線交于不同的兩點,與射線分別交于點,若點恰為線段的兩個三等分點,求此時直線的方程.

          試題詳情

          解:(I)由題可設,,其中.

          試題詳情

                                                    1分

          試題詳情

          的面積為定值2,

          試題詳情

          .                 2分

          試題詳情

          ,消去,得:.                          4分

          試題詳情

          由于,∴,所以點的軌跡方程為(x>0).

          5分

          試題詳情

          (II)依題意,直線的斜率存在,設直線的方程為

          試題詳情

          消去得:,                    6分

          試題詳情

          設點、、、的橫坐標分別是、、、,

          試題詳情

          ∴由                           8分

          試題詳情

          解之得:

          試題詳情

          .                       9分

          試題詳情

          消去得:,

          試題詳情

          消去得:

          試題詳情

          .                                               10分

          試題詳情

          由于的三等分點,∴.                 11分

          試題詳情

          解之得.                                                   12分

          試題詳情

          經檢驗,此時恰為的三等分點,故所求直線方程為.

          試題詳情

          15、(北京市十一學校2008屆高三數學練習題)如圖,橢圓的中心在原點,其左焦點與拋物線的焦點重合,過的直線與橢圓交于A、B兩點,與拋物線交于C、D兩點.當直線與x軸垂直時,

          (Ⅰ)求橢圓的方程;

          試題詳情

          (II)求過點O、,并且與橢圓的左準線相切的圓的方程;

          試題詳情

          (Ⅲ)求的最大值和最小值.

          試題詳情

          解:(Ⅰ)由拋物線方程,得焦點

          試題詳情

          設橢圓的方程:

          試題詳情

          解方程組 得C(-1,2),D(1,-2).

          由于拋物線、橢圓都關于x軸對稱,

          試題詳情

          , ∴ .        …………2分

          試題詳情

          ,

          試題詳情

          因此,,解得并推得

          試題詳情

          故橢圓的方程為 .                            …………4分

          試題詳情

          (Ⅱ),

          試題詳情

          圓過點O、,

          試題詳情

          圓心M在直線上.

          試題詳情

          則圓半徑,由于圓與橢圓的左準線相切,

          試題詳情

          試題詳情

          解得

          試題詳情

          所求圓的方程為…………………………8分

          試題詳情

          (Ⅲ) 由

          試題詳情

          ①若垂直于軸,則,

          試題詳情

                   

          試題詳情

                   …………………………………………9分

          試題詳情

          ②若軸不垂直,設直線的斜率為,則直線的方程為

          試題詳情

             

          試題詳情

              得 

          試題詳情

          方程有兩個不等的實數根.

          試題詳情

          ,.

          試題詳情

          ,   ………………………………11分

          試題詳情

          試題詳情

          試題詳情

                  

          試題詳情

                   

          試題詳情

                   =

          試題詳情

           

          試題詳情

          ,所以當直線垂于軸時,取得最大值

          試題詳情

          當直線軸重合時,取得最小值

          試題詳情

          16、(北京市西城區(qū)2008年4月高三抽樣測試)已知定點及橢圓,過點的動直線與橢圓相交于兩點.

          試題詳情

          (Ⅰ)若線段中點的橫坐標是,求直線的方程;

          試題詳情

          (Ⅱ)在軸上是否存在點,使為常數?若存在,求出點的坐標;若不存在,請說明理由.

          (Ⅰ)解:

          試題詳情

          依題意,直線的斜率存在,設直線的方程為,

          試題詳情

          代入, 消去整理得    ………….. 2分

          試題詳情

            則    ………….. 4分

          試題詳情

          由線段中點的橫坐標是,   得,

          試題詳情

          解得,適合.                                                   ………….. 5分

          試題詳情

          所以直線的方程為 ,或 .                    ………….. 6分

          (Ⅱ)解:

          試題詳情

          假設在軸上存在點,使為常數.

          試題詳情

          ① 當直線軸不垂直時,由(Ⅰ)知    

          試題詳情

          所以

          試題詳情

                                              ………….. 8分

          試題詳情

          代入,整理得

          試題詳情

                                     

          試題詳情

          注意到是與無關的常數, 從而有, 此時  .. 11分

          試題詳情

          ② 當直線軸垂直時,此時點的坐標分別為,

          試題詳情

          時, 亦有                                          ………….. 13分

          試題詳情

          綜上,在軸上存在定點,使為常數.

          試題詳情

          17、(北京市西城區(qū)2008年5月高三抽樣測試)已知拋物線的方程為,過點的直線與拋物線相交于A、B兩點,分別過點A、B作拋物線的兩條切線的斜率之積為定值;

          試題詳情

          (Ⅰ)證明:直線的斜率之積為定值;

          (Ⅱ)求點M的軌跡方程。

          解:(I)依題意,直線l的斜率存在,設直線l的方程為y=kx+p

          試題詳情

          試題詳情

          18、(北京市宣武區(qū)2008年高三綜合練習一)在面積為9的中,,且。現建立以A點為坐標原點,以的平分線所在直線為x軸的平面直角坐標系,如圖所示。

          (1)求AB、AC所在的直線方程;

          (2)求以AB、AC所在的直線為漸近線且過點D的雙曲線的方程;

          試題詳情

          (3)過D分別作AB、AC所在直線的垂線DF、DE(E、F為垂足),求的值。

          試題詳情

          解:(1)設

          試題詳情

          則由

          試題詳情

          為銳角,

          試題詳情

          ,

          試題詳情

          AC所在的直線方程為y=2x

          AB所在的直線方程為y= -2x…………………………………………….4分

          試題詳情

          (2)設所求雙曲線為

          試題詳情

          ,,

          試題詳情

          可得:

          試題詳情

          ,

          試題詳情

           

          試題詳情

          ,可得,

          試題詳情

          ,

          試題詳情

          試題詳情

          ,代入(1)得,

          試題詳情

          雙曲線方程為…………………………………………………9分

          試題詳情

          (3)由題設可知,,

          試題詳情

          試題詳情

          設點D為,則

          又點D到AB,AC所在直線距離

          試題詳情

          ,

          試題詳情

          =

          試題詳情

          19、(北京市宣武區(qū)2008年高三綜合練習二)已知橢圓的離心率為,且其焦點F(c,0)(c>0)到相應準線l的距離為3,過焦點F的直線與橢圓交于A、B兩點。

          (1)求橢圓的標準方程;

          試題詳情

          (2)設M為右頂點,則直線AM、BM與準線l分別交于P、Q兩點,(P、Q兩點不重合),求證:

          試題詳情

          解:(1)由題意有 解得

          試題詳情

                  ∴橢圓的標準方程為 ……………………………………5分

          試題詳情

          (2)①若直線AB與軸垂直,則直線AB的方程是

          試題詳情

          ∵該橢圓的準線方程為,

          試題詳情

          ,, ∴,

          試題詳情

          ∴當直線AB與軸垂直時,命題成立。

          試題詳情

          ②若直線AB與軸不垂直,則設直線AB的斜率為

          試題詳情

          ∴直線AB的方程為

          試題詳情

          又設

          試題詳情

          聯立 消y得

          試題詳情

            ∴

          試題詳情

          又∵A、M、P三點共線,∴ 同理

          試題詳情

          ,

          試題詳情

          試題詳情

          綜上所述:

          試題詳情

          20、(四川省成都市2008屆高中畢業(yè)班摸底測試)設雙曲線C:的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q。

          試題詳情

             (Ⅰ)若直線m與x軸正半軸的交點為T,且,求點T的坐標;

             (Ⅱ)求直線A1P與直線A2Q的交點M的軌跡E的方程;

          試題詳情

             (Ⅲ)過點F(1,0)作直線l與(Ⅱ)中的軌跡E交于不同的兩點A、B,設,若(T為(Ⅰ)中的點)的取值范圍。

          試題詳情

          解:(Ⅰ)由題,得,設

          試題詳情

          試題詳情

            …………①

          試題詳情

          在雙曲線上,則   …………②

          試題詳情

          聯立①、②,解得    

          試題詳情

          由題意,

          ∴點T的坐標為(2,0)   …………3分

          (Ⅱ)設直線A1P與直線A2Q的交點M的坐標為(x,y)

          由A1、P、M三點共線,得

          試題詳情

             …………③  …………1分

          由A2、Q、M三點共線,得

          試題詳情

             …………④  …………1分

          試題詳情

          聯立③、④,解得    …………1分

          試題詳情

          在雙曲線上,

          試題詳情

          試題詳情

          ∴軌跡E的方程為  …………1分

          (Ⅲ)容易驗證直線l的斜率不為0。

          試題詳情

          故可設直線l的方程為  中,得

          試題詳情

            

          試題詳情

          試題詳情

          則由根與系數的關系,得  ……⑤

          試題詳情

            ……⑥   …………2分

          試題詳情

          ∴有

          將⑤式平方除以⑥式,得

          試題詳情

             …………1分

          試題詳情

          試題詳情

            …………1分

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          試題詳情

          試題詳情

              ∴,即

          試題詳情

          試題詳情

          ,  ∴

          試題詳情

          試題詳情

          21、(東北區(qū)三省四市2008年第一次聯合考試)已知中心在原點,左、右頂點A1、A2在x軸上,離心率為的雙曲線C經過點P(6,6),動直線l經過△A1PA2的重心G與雙曲線C交于不同兩點M、N,Q為線段MN的中點。

          (1)求雙曲線C的標準方程

          試題詳情

          (2)當直線l的斜率為何值時,。

          本小題考查雙曲線標準議程中各量之間關系,以及直線與雙曲線的位置關系。

          試題詳情

          解(1)設雙曲線C的方程為

          ②②

          試題詳情

          由①、②解得

          試題詳情

          所以雙曲線C的方程為。

          試題詳情

          (2)由雙曲線C的方程可得

          所以△A1PA2的重點G(2,2)

          試題詳情

          設直線l的方程為代入C的方程,整理得

                • ③③②

                  試題詳情

                  試題詳情

                  整理得

                  <legend id="o5kww"></legend>
                  <style id="o5kww"><abbr id="o5kww"></abbr></style>

                  <strong id="o5kww"><u id="o5kww"></u></strong>
                • <sub id="o5kww"></sub>

                  ④③②

                  試題詳情

                  由③,可得

                    1. ⑤③②

                      試題詳情

                      由④、⑤,得

                      試題詳情

                      22、(東北三校2008年高三第一次聯考)設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q, 且

                      試題詳情

                         (1)求橢圓C的離心率;

                         (2)若過A、Q、F三點的圓恰好與直線l:

                      試題詳情

                      相切,求橢圓C的方程.

                      試題詳情

                      解:⑴設Q(x0,0),由F(-c,0)

                      試題詳情

                      A(0,b)知

                      試題詳情

                      …2分

                      試題詳情

                      ,得………4分

                      試題詳情

                      因為點P在橢圓上,所以………6分

                      試題詳情

                      整理得2b2=3ac,即2(a2-c2)=3ac,,故橢圓的離心率e=………8分

                      試題詳情

                      ⑵由⑴知,

                      試題詳情

                      于是F(-a,0), Q

                      試題詳情

                      △AQF的外接圓圓心為(a,0),半徑r=|FQ|=a…………10分

                      試題詳情

                      所以,解得a=2,∴c=1,b=,

                      試題詳情

                      所求橢圓方程為

                      試題詳情

                      23、(東北師大附中高2008屆第四次摸底考試)已知雙曲線的中心在原點,對稱軸為坐標軸,其一條漸近線方程是,且雙曲線過點.

                      試題詳情

                         (1)求此雙曲線的方程;

                      試題詳情

                      (2)設直線過點,其方向向量為,令向量滿足.雙曲線的右支上是否存在唯一一點,使得. 若存在,求出對應的值和的坐標;若不存在,說明理由.

                      試題詳情

                      解:(1)設雙曲線的方程為,將點代入可得,

                      試題詳情

                              雙曲線的方程為.

                      試題詳情

                         (2)依題意,直線 的方程為 .設是雙曲線右支上滿足

                      試題詳情

                       的點,結合 ,得

                      試題詳情

                      即點到直線的距離 

                      試題詳情

                          ①若,則直線與雙曲線的右支相交,此時雙曲線的右支上有兩個點到直線的距離為1,與題意矛盾;

                      試題詳情

                      ②若,則直線在雙曲線右支的上方,故,從而

                      試題詳情

                      . 又因為 ,所以

                      試題詳情

                      .

                      試題詳情

                      時,方程有唯一解 ,則;

                      試題詳情

                      時,由,此時方程有唯一解 ,則

                      試題詳情

                      綜上所述,符合條件的值有兩個:,此時;,此時.

                      試題詳情

                      24、(本小題滿分12分) 已知橢圓過點,且離心率e=.

                      (Ⅰ)求橢圓方程;

                      試題詳情

                      (Ⅱ)若直線與橢圓交于不同的兩點、,且線段的垂直平分線過定點,求的取值范圍。

                      由題意橢圓的離心率

                      試題詳情

                                 

                      試題詳情

                      ∴橢圓方程為……2分

                      試題詳情

                      又點在橢圓上         

                      試題詳情

                      ∴橢圓的方程為……4分

                      試題詳情

                      (Ⅱ)設    由

                      試題詳情

                      消去并整理得……6分

                      試題詳情

                      ∵直線與橢圓有兩個交點

                      試題詳情

                      ,即……8分

                      試題詳情

                         中點的坐標為……9分

                      試題詳情

                      的垂直平分線方程:

                      試題詳情

                      上        即

                      試題詳情

                      ……11分

                      試題詳情

                      將上式代入得    

                      試題詳情

                         的取值范圍為

                      試題詳情

                      25、(福建省莆田一中2007~2008學年上學期期末考試卷)在平面直角坐標系中,過定點作直線與拋物線)相交于兩點.

                      試題詳情

                      (I)若點是點關于坐標原點的對稱點,求面積的最小值;

                      試題詳情

                      (II)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程;若不存在,說明理由.

                      試題詳情

                      解法1:(Ⅰ)依題意,點的坐標為,可設,

                      試題詳情

                      直線的方程為,與聯立得消去

                      試題詳情

                      由韋達定理得,

                      試題詳情

                      于是

                      試題詳情

                      試題詳情

                      ,

                      試題詳情

                      時,

                      試題詳情

                      (Ⅱ)假設滿足條件的直線存在,其方程為,

                      試題詳情

                      的中點為為直徑的圓相交于點,的中點為,

                      試題詳情

                      點的坐標為

                      試題詳情

                      ,

                      試題詳情

                      試題詳情

                      試題詳情

                      ,

                      試題詳情

                      試題詳情

                      ,得,此時為定值,故滿足條件的直線存在,其方程為,

                      即拋物線的通徑所在的直線.

                      解法2:(Ⅰ)前同解法1,再由弦長公式得

                      試題詳情

                      試題詳情

                      試題詳情

                      又由點到直線的距離公式得

                      試題詳情

                      從而,

                      試題詳情

                      時,

                      試題詳情

                      (Ⅱ)假設滿足條件的直線存在,其方程為,則以為直徑的圓的方程為,

                      試題詳情

                      將直線方程代入得,

                      試題詳情

                      試題詳情

                      設直線與以為直徑的圓的交點為,

                      試題詳情

                      則有

                      試題詳情

                      ,得,此時為定值,故滿足條件的直線存在,其方程為

                      即拋物線的通徑所在的直線.

                      試題詳情